
VECTOR BUNDLES WITH NO INTERMEDIATE
COHOMOLOGY ON FANO THREEFOLDS OF TYPE V22

ENRIQUE ARRONDO AND DANIELE FAENZI

Abstract. We classify rank-2 vector bundles with no intermediate co-
homology on the general prime Fano threefold of index 1 and genus 12.
The structure of their moduli spaces is given by means of a monad–
theoretic resolution in terms of exceptional bundles.

1. Introduction

The study of vector bundles with no intermediate cohomology, also called
arithmetically Cohen–Macaulay bundles (see Definition 2.1), has been taken
up by several authors. The well–known splitting criterion for the projective
spaces showed by Horrocks in [Hor64] has been generalized by Ottaviani in
[Ott89] and [Ott87] to Grassmannians and quadrics. Knörrer in [Knö87]
proved that line bundles and spinor bundles are the only aCM bundles on
quadrics, while Buchweitz Greuel and Schreyer showed in [BGS87] that only
projective spaces and quadrics admit a finite number of equivalence classes
of aCM bundles up to twist.

On the other hand, the problem of classifying aCM bundles on special
classes of varieties has been studied in several papers. Costa and the first
author took up the case of prime Fano threefolds of index 2 in [AC00],
while the second author in [Fae03] considered the case of the index-2 prime
threefold V5.

On the other hand Madonna classified rank-2 aCM bundles on the quartic
threefold in [Mad00]. He also got in [Mad02] a numerical classification of
the invariants of these bundles on any prime Fano threefold V2 g−2 of index
1 and genus g, 2 ≤ g ≤ 12, g 6= 11. In particular he conjectured that all the
cases of this classification occur on any such threefold V2 g−2.

For higher dimensional varieties, the case of G(P1,P4) has been studied
by Graña and the first author in [AG99].

Here we consider rank-2 aCM bundles on the general prime Fano threefold
X of index 1 and genus 12 (see Definition 2.3). We write a bundle the Chern
classes of a sheaf F on X as integers (see Section 2), and we denote a rank-2
sheaf F on X with c1(F ) = c1 and c2(F ) = c2 by Fc1,c2 .

The main result of this paper is the following Theorem.
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Theorem. On the general X there exist the following vector bundles with
no intermediate cohomology:

i) The bundle F−1,1 associated to a line contained in X;
ii) The bundle F0,2 associated to a conic contained in X;
iii) The bundle F−1,d(1) associated to an elliptic curve of degree d, with

7 ≤ d ≤ 14;
iv) The bundle F0,4(1) associated to a canonical curve of degree 26 and

genus 14 contained in X;
v) The bundle F−1,15(2) associated to a half–canonical curve C59

60 of degree
59 and genus 60 contained in X.

These are the only possible indecomposable vector bundles with no inter-
mediate cohomology on X up to isomorphism and twist by line bundles.

The moduli space of semistable vector bundles with no intermediate coho-
mology is generically smooth of dimension equal to 2 in Case (ii), 2d − 14
in Case (iii), 5 in Case (iv) 16 in Case (v).

This gives a complete classification of aCM rank-2 bundles on the general
Fano threefold X together with a description of the moduli space of all of
them. The main tools to show the above theorem are the study of elliptic
curves in X and the resolution of the diagonal on X×X obtained in [Fae04].

The paper is structured as follows. In Section 2 we give basic definitions
and we review some known facts concerning the threefold X. We will fre-
quently use the available descriptions of X which we recall in Subsections
2.1, 2.2, 2.3 and 2.4 for the reader’s convenience.

In Section 3 we consider briefly lines and conics contained in X and we
also give a monad–theoretic interpretation of the Hilbert scheme of lines and
conics contained in X. In Sections 4 and 5 we take up the analysis of elliptic,
canonical and half–canonical curves in X which give rise to vector bundles
with no intermediate cohomology, proving their existence and describing the
moduli spaces associated to them.

Aknowledgements. Both authors wish to thank the Department of Math-
ematics of Università di Firenze and of Universidad Complutense de Madrid
for the friendly hospitality and the opportunity to work together in several
occasions.

Many computations involved in the present paper were considerably aided
by the Maple package Schubert, developed by Sheldon Katz, Stein Arild
Strømme, and Jan–Magnus Økland, see [KS92].

2. Preliminaries

Let Y be a smooth projective variety, equipped with a very ample line
bundle OY (1). Following standard terminology we put the following defini-
tion.

Definition 2.1. Given a sheaf F over Y , we say that F is aCM (arith-
metically Cohen–Macaulay) if Hp(Y,F (t)) = 0, for all t ∈ Z and for
0 < p < dim(Y ). Equivalently we will say that F has no intermediate
cohomology.
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Denote the dual of a vector bundle F by F ∗, and recall that if F has
rank 2, we have F ∗ ' F (−c1(F )).

We recall the Hartshorne–Serre correspondence between codimension-2
subvarieties and rank-2 vector bundles, originally introduced in [Ser63], later
considered by many authors, see e.g. [Har74], [Vog78], [OSS80].

Definition 2.2. Let Z be a complete subvariety of Y . Then Z is called
subcanonical if there exists a line bundle L on Y such that L|Z ' ωZ .

Let Z be a subcanonical locally complete intersection 2-codimensional
subvariety of Y . Then by [OSS80, Theorem 5.1.1] there exist a rank-2 vector
bundle FZ over Y and a section sZ ∈ H0(Y,F ∗

Z) such that Z = {sZ = 0}
i.e. Z is the zero locus of sZ . We will say in this case that FZ is associated
to Z. We will denote by NZ,Y the normal bundle of Z in Y and by JZ,Y the
ideal sheaf of Z in Y .

In the hypothesis of the above definition we have the fundamental exact
sequence:

(1) 0 → det(FZ) → FZ → JZ,Y → 0

Finally, in these hypothesis we have the adjunction isomorphism:

(2) (F ∗
Z)|Z ' NZ,Y

Definition 2.3. A prime Fano threefold of index 1 and genus 12 is a
3-dimensional algebraic variety X with Pic(X) ' Z = 〈OX(1)〉, ωX '
OX(−1), and deg(OX(1)) = 22. The last condition is equivalent to the
general curve in the linear system of the double linear section of X having
genus 12. Any such X is rational, and we have h0(OX(1)) = 14. Further,
the i-th Chow group CHi(X) is isomorphic to Z for i = 1, 2, 3.

From now on we will denote by X a prime Fano threefold of index 1 and
genus 12. We will denote the Chern classes of a sheaf F on X by integers
ci ∈ Z meaning ci(F ) = ciξi where ξi is the generator of CHi(X) ' Z for
i = 1, 2, 3. Recall that ξ2 is the class of a line in X. Further, we define
µ(F ) as the rational number c1(F )/ rk(F ). We say that a vector bundle
F is normalized if − rk(F ) < c1(F ) ≤ 0, equivalently F is normalized
if −1 < µ(F ) ≤ 0. Clearly we have µ(F1⊗F2) = µ(F1) + µ(F2). We
refer to [HL97] for the definition of (semi)stability (in the sense of Mumford
and Takemoto). A stable bundle F with µ(F ) < 0 satisfies h0(F ) = 0.
Recall by Hoppe’s criterion that, since Pic(X) is generated by OX(1), a
rank-2 bundle F on X is stable if h0(F (t)) = 0, with c1(F (t)) = 0 or
c1(F (t)) = −1, see e.g. [OSS80, Lemma 1.2.5].

By Hirzebruch–Riemann–Roch’s formula for a rank r vector bundle on X
with Chern classes ci we have the formula:

6χ(F (s)) = 22 s3 r + 11 s2 (3 r + 6 c1) + s (23 r + 66 c1 − 6 c2 + 66 c21)+

+ 6 r + 23 c1 − 3 c2 − 3 c1 c2 + 33 c21 + 3 c3 + 22 c31
Given a smooth projective variety Y , equipped with a very ample line

bundle OY (1), we will write MY (r; c) where r is an integer and c is a string
with ci ∈ CHi(Y ) (identified with integers whenever possible) for the moduli
space of rank-r semistable vector bundles on Y with Chern classes ci.
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Let PZ be the Hilbert polynomial of a subscheme Z ⊂ Y with respect
to the polarization OY (1). Given a natural number m, we will denote the
Hilbert scheme of subschemes of Y of length m by Hilbm(Y ). Further,
given a reduced curve Z ⊂ Y of degree d and genus g, we will denote by
Hd,g(Y ) the irreducible component containing [Z] of the Hilbert scheme of
subschemes of Y whose Hilbert polynomial equals PZ cfr. [HL97, Page 41].

Now, if Z is a reduced curve associated to the rank 2 vector bundle FZ

over a smooth projective threefold Y , by virtue of the exact sequence (1),
the Hilbert polynomial and the Chern classes of FZ are determined by the
degree d and genus g of Z. Notice also that the bundle FZ associated to Z
is represented by an element of Ext1Y (JZ,Y ,det(FZ)).

So, if dim Ext1Y (JZ,Y ,det(FZ)) = 1, and if the bundle FZ is semistable,
the Hartshorne–Serre correspondence provides a rational map:

τ : Hd,g(Y ) 99K MY (2; c1(FZ), c2(FZ))(3)

[Z] 7→ [FZ ]

In the next subsections we will recall some of the available constructions
of the threefold X. We will also sketch the description of four fundamental
vector bundles E, U , Q, K, respectively of rank 2, 3, 4, 5, defined over X.

We refer to [Muk92], [Muk03], [Sch01] and [Fae04] for the proofs and some
more details.

2.1. Nets of dual quadrics and twisted cubics. Let k be an alge-
braically closed field, A ' k4 and B ' k3 be k-vector spaces, and let
R(A) = k[A] (respectively, R(B) = k[B]) be polynomial algebras over A
(respectively, over B). Let SdA = R(A)d be the d-th symmetric power
of the vector space A. Given a twisted cubic Γ, we have PΓ(t) = 3 t + 1
and we consider H = H3,0(P(A)), as constructed in [EPS87]. Given a
twisted cubic [Γ] ∈ H, denote by JΓ the ideal sheaf of Γ in P(A). The
open subset Hc consisting of points which are Cohen–Macaulay embeds in
G(k3,S2A) by means of the vector bundle UH whose fiber over [Γ] ∈ Hc is
TorR[A]

1 (R[A]/JΓ, k)2 ' k3. Equivalently, we associate to any [Γ] ∈ H the
net of quadrics in P(A) vanishing on Γ.

Definition 2.4. A net of dual quadrics Ψ (parametrized by B) in P(A)
is defined as a surjective map Ψ : S2A → B. Let VΨ = ker(Ψ). Given a
general net Ψ we define:

XΨ ={[Γ] ∈ H ⊂ H3,0(P(A))|Ψ(H0(JΓ(2))) = 0} =

={[Γ] ∈ H ⊂ H3,0(P(A))|H0(JΓ(2)) ⊂ VΨ}

We define the bundle U on X as the restriction to X of UH.

Definition 2.5. Let Ψ be a general net of dual quadrics and set X =
XΨ. Then there is a rank-2 vector bundle E on X defined by E[Γ] =

TorR[A]
2 (R[A]/JΓ, k)3 ' k2. Equivalently we associate to any [Γ] ∈ H its

space of first–order syzygies.

We recall the following lemma from [Fae04, Lemma 6.3].
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Lemma 2.6. The bundle E∗ is globally generated and aCM with h0(E∗) = 8.
There is a rank-6 bundle E′ = ker(H0(E∗)⊗O → E∗). The bundle E′ is
also stable and aCM.

2.2. Plane quartics. Let B be a 3-dimensional k-vector space and F ∈
S4B be a plane quartic. Put P̌2 = P(B∗). Consider the Hilbert scheme
Hilb6(P̌2) of zero–dimensional length 6 closed subschemes of P̌2. We define
the subvariety of Hilb6(P̌2) consisting of polar hexagons to F .

XF = {Λ = (f1, . . . , f6) ∈ Hilb6(P̌2) | f4
1 + · · ·+ f4

6 = F}
Lemma 2.7 (Mukai, Schreyer). For general F the variety XF is a prime
Fano threefold of index 1 and genus 12. Given a net of dual quadrics Ψ,
there exists a quartic form F such that XF ' XΨ.

Definition 2.8. Let F be a general plane quartic and let X = XF . Then
there is a rank-5 vector bundle K on XF defined over an element Λ =
(f1, . . . , f6) ∈ XF by KΛ = 〈f4

1 , . . . , f
4
6 〉/F . The bundle K∗ is stable and

aCM (cfr. [Fae04, Lemma 6.2]) with h0(K∗) = 14 and c1(K) = −2 (cfr.
[Fae04, Lemma 6.1]).

Remark 2.9. Under the hypothesis of Lemma 2.7, there is a natural iso-
morphism VΨ ' S3B/F (B∗), where we consider F as a map B∗ → S3B
taking an element ∂ ∈ B∗ to the cubic form ∂(F ) (apolarity action). We set
VF = S3B/F (B∗). The fiber of U over an element Λ = (f1, . . . , f6) ∈ XF is
naturally identified with 〈f3

1 , . . . , f
4
3 〉/F (B∗). The global sections of U∗ (re-

spectively, of K∗) are then identified with VF = S3B/F (B∗) (respectively,
with S4B/F ). An element ∂ of B∗ gives a map S4B → S3B by apolarity
action and therefore a homomorphism ∂ : K → U .

2.3. Nets of alternating 2-forms. Let V (respectively, B) be a 7-
dimensional (respectively, 3-dimensional) k-vector space and let G be the
Grassmannian G(k3, V ). Define UG (resp. QG) as the universal rank 3 sub-
bundle (resp. the universal rank 4 quotient bundle) on G and let σ be a
section of B∗⊗∧2U∗

G. Equivalently σ is a net of alternating 2-forms i.e.
σ ∈ B∗⊗∧2V ∗.

Definition 2.10. Define Xσ as the zero locus in G of σ ∈ B∗⊗∧2V ∗. For
general σ the variety Xσ is a prime Fano threefold of index 1 and genus 12.

Lemma 2.11 (Mukai). Given a general plane quartic F there is a net of
alternating 2-forms σF such that Xσ ' XF .

From now on we identify X with XΨ ' XF ' Xσ where Ψ is a general
net of dual quadrics, F is the quartic form provided by Lemma 2.7 and σ is
the net of alternating 2-forms given by Lemma 2.11. In particular, we fix a
3-dimensional (respectively, 4-dimensional) k-vector space B (respectively,
A). Recall by Remark 2.9 that we have V ' VF ' VΨ. We observe also
that in our hypothesis we have (UG)|X ' (UH)|X , so we denote by U also
the restriction to Xσ of the vector bundle UG. We set Q = (QG)|X .

Lemma 2.12. There are the following natural isomorphisms:

Hom(U,Q∗) ' B Hom(E,U) ' A∗(4)

Hom(K,U) ' B∗ Hom(E,K) ' A(5)
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Moreover there are the following exact sequences:

0 −→ U −→ V ⊗O −→ Q −→ 0(6)

0 −→ K −→ B⊗U −→ Q∗ −→ 0(7)

0 −→ ∧2U −→ A⊗E −→ K −→ 0(8)

0 → E → O⊕8 → (E′)∗ → 0(9)

The Chern classes of these bundles are:

c1(E) = −1 c2(E) = 7

c1(U) = −1 c2(U) = 10 c3(U) = −2

c1(Q∗) = −1 c2(Q∗) = 12 c3(Q∗) = −4

c1(K) = −2 c2(K) = 40 c3(K) = −20

c1(E′) = −1 c2(E′) = 15 c3(E′) = −8

Proof. The exact sequences (6) and (7) are proved in [Fae04, Lemma 6.1],
together with (4) and the first isomorphism in (5).

On the other hand, (8) follows by [Fae04, Proposition 6.4] and (9) is
Lemma 2.6. The second isomorphism in (5) follows from [Fae04, Corollary
6.8].

The Chern classes of U , Q∗ and ∧2U are easily computed by restriction
from G(k3, V ). Finally, the Chern classes of K, E and E′ follow from the
exact sequences (7), (8) and (9). �

2.4. Birational Geometry. We resketch briefly the birational geometry
of X following [Isk78], [Isk89]. Fano’s double projection from a line is used
there and we refer to [IP99] for a complete treatment.

Let V5 be the del Pezzo threefold obtained cutting G(P1,P4) ⊂ P9 with a
general P6 ⊂ P9 and denote by S5 a general hyperplane section of V5.

It turns out that X is birational to V5 under the double projection from
a line contained in X and we will use this map to embed in X some elliptic
curves contained in V5.

The divisor S5 is a degree 5 del Pezzo surface, hence isomorphic to the
blow–up of P2 at 4 points B1, . . . , B4. Further we have ω∗S5

' OS5(1) '
O(3 ` −

∑
bi) where ` is the class of a line in P2 and bi is the exceptional

divisor over the point Bi.
Recall by [IP99] that the threefold V5 contains a rational normal curve

C5
0 of degree 5 (restrict to S5 and take the divisor 2`− b1). Further C5

0 has
exactly 3 chords Ti, i = 1, 2, 3. Indeed any chord of C5

0 is contained in S5

and the only lines in S5 meeting C5
0 at two points are of the form `− bi− bj ,

for 1 < i < j.
Denoting by HV5 the divisor associated to OV5(1), the linear system

3HV5 − 2C5
0 defines a birational map ϕ : V5 99K X. Let X̃ be the variety

obtained by blowing up V5 along C5
0 and then along the proper preimages of

Tj for j = 1, . . . , 3 and ψ1 the contraction to V5. There exists a contraction

X̃
ψ2−→ X and we have ϕ ◦ ψ1 = ψ2.
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Definition 2.13. Let us fix a general hyperplane section S5 of V5 and an
isomorphism S5 → BlB1,...,B4(P2) (there is a finite number of such isomor-
phisms). Let bi be the exceptional divisors on S5 over Bi. For a given ra-
tional normal curve C5

0 ⊂ V5 with chords {Ti, i = 1, 2, 3} let {e1, . . . , e5} =
S5 ∩C5

0 and fi = S5 ∩Ti. On S5 we define L = 9`− 3
∑
bi− 2

∑
ej −

∑
fk

and we have ϕ|S5
= ϕ|L |, where ϕ|L | is the map associated to the linear

system |L |.

2.5. Resolution of the diagonal. We will recall here the resolution of the
diagonal on X and the induced Beilinson theorem. We refer to [Gor90],
[Rud90], [Dre86] for general setup on exceptional collection and mutations.

Let us define the collection (G3, . . . , G0) = (E,U,Q∗,O). This collection
is strongly exceptional i.e. Extp(Gj , Gi) = 0 if p > 0 or if i > j. This
is proved in [Kuz96]. Furthermore we define the collection (G3, . . . , G0) =
(E,K,U,O). The following lemma, which is proved in [Fae04, Theorem 7.2],
states that these two collections fit together to give a resolution of O∆ over
X ×X.

Lemma 2.14. For general X there exists a resolution of O∆ on X ×X of
the form:

0 → G3 �G3 → · · · → G0 �G0 → O∆ → 0

Any coherent sheaf F on X is functorially isomorphic to the cohomology
of a complex CF whose terms are given by:

CkF =
⊕
i−j=k

Hi(F ⊗Gj)⊗Gj

Alternatively F is functorially isomorphic to the cohomology of a complex
DF whose terms are given by:

Dk
F =

⊕
i−j=k

Hi(F ⊗Gj)⊗Gj

We have the following consequence of Lemma 2.14, namely Castelnuovo–
Mumford regularity associated to the collection (G3, . . . , G0), cfr. [Fae04,
Corollary 7.4].

Corollary 2.15. Let F be a coherent sheaf on X and suppose
Hp(Gp⊗F ) = 0 for p > 0. Then F is globally generated.

2.6. Vector bundles with no intermediate cohomology. Recall from
the introduction that a rank 2 vector bundle F with c1(F ) = c1 and
c2(F ) = c2 is denoted by Fc1,c2 . Similarly, a curve of genus g and degree d
is denoted by Cdg .

Lemma 2.16 (Madonna). The only possible classes of indecomposable nor-
malized rank-2 aCM vector bundles on X up to isomorphism are the follow-
ing:

i) The unstable bundle F−1,1 associated to a line in X;
ii) The semistable bundle F0,2 associated to a conic in X;
iii) The stable bundle F−1,d(1) associated to an elliptic curve Cd1 contained

in X with 7 ≤ d ≤ 14;
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iv) The stable bundle F0,4(1) associated to a canonical curve C26
14 contained

in X;
v) The stable bundle F−1,15(2) associated to a half–canonical curve C59

60

contained in X.
In any of these cases, the smallest t ∈ Z such that h0(F (t)) 6= 0 is the

one stated.

Proof. We refer to [Mad02] for the full proof, with the only exception of
condition d ≥ 7 in (iii) which we show at the end of Section 4. However,
we sketch here the main argument used in [Mad02]. Considering the first
twist Fc1,c2 of F with a nonzero global section s, one proves easily that
Z = {s = 0} is a connected curve of arithmetic genus 1 + 1/2(c1c2 − c2)
and degree c2. Therefore c1 ≥ 1 − 2/c2 ≥ −1, so F is stable except for
c1 = −1, 0, which correspond respectively to Cases (i) and (ii).

For c1 = 1 we end up in Case (iii) and, making use of (1), it is easy to
check that d ≤ 14.

For c1 > 1 we find hp(Fc1,c2(−1)) = 0 and hp(Fc1,c2(−2)) = 0 for any p.
Take now the following polynomial equations in the variables c1 and c2{

χ(Fc1,c2(−1)) = 0
χ(Fc1,c2(−2)) = 0

When c1 > 1 we find as only solutions Cases (iv) and (v). �

3. Lines and conics

It is classically known that X contains a one–dimensional family of lines
and a two–dimensional family of smooth conics (see [IP99, Propositions 4.2.2
and 4.2.5] and references therein). Denote a line (respectively, a conic) in X
by C1

0 (respectively, by C2
0 ). Here we will just provide resolutions of the sheaf

OC1
0
(−1) and of the bundle FC2

0
with respect to the collection (G3, . . . , G0).

This will give a straightforward description of the Hilbert schemes of lines
and conics in X.

Lemma 3.1. The sheaf OC1
0
(−1) admits the resolution:

(10) 0 → E → K
α

C1
0−−→ U → OC1

0
(−1) → 0

The map αC1
0
∈ Hom(K,U) ' B∗ degenerates along a line C1

0 if and
only if it lies in the discriminant quartic curve det(Ψ>) ⊂ P̌2 = P(B∗).
In particular the Hilbert scheme of lines in X is isomorphic to the curve
det(Ψ>).

Proof. Clearly we have (Gj)C1
0

' OP1(−1) ⊕ O4−j
P1 . It follows that

h1(Gj ⊗OC1
0
(−1)) = 1 for j = 3, 2, 1, so by Lemma 2.14 the sheaf OC1

0
(−1)

admits the resolution (10).
The Hilbert scheme of lines in X is isomorphic to the curve det(Ψ>) by

[Sch01, Theorem 6.1]. However here we sketch a simpler argument. Recall
by (5) the isomorphism Hom(K,U) ' B∗. Applying the functor Hom(E,−)
to a morphism α : K → U , corresponds to the linear map α 7→ Ψ>(α) under
the morphism Ψ> : B∗ → S2A∗ i.e. α is taken by Hom(E,−) to a linear
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map A
Ψ>(α)−−−−→ A∗. Since Hom(E,K)⊗E → K and Hom(E,U)⊗E → U

are epimorphisms, it follows that Hom(E,α) is surjective if and only if α
is surjective. This fails to hold precisely if α lies in the discriminant curve
det(Ψ>), in which case there is a unique map E → ker(α). This map is
an isomorphism and we see that coker(α) is isomorphic to OC1

0
(−1) by a

Hilbert polynomial computation. �

Lemma 3.2 (Takeuchi). Through any point in X there exists a finite num-
ber of conics contained in X. The Hilbert scheme of conics in X is isomor-
phic to P(B).

Proof. The first statement is proved in [Tak89]. Also one may consult [IP99,
Lemma 4.2.6]. For any conic C2

0 in X there exists an exact sequence:

(11) 0 → U → Q∗ → JC2
0 ,X

→ 0

On the other hand any homomorphism U → Q∗ degenerates along a conic.
Since Hom(U,Q∗) ' B the lemma is proved. �

The previous lemma allows us to formulate the following corollary.

Corollary 3.3. The set of stable points in moduli space MX(2; 0, 2) is empty.
The set of semistable points is isomorphic to P2 = P(B). The bundle F0,2

of Lemma 2.16, Case (ii) admits the following resolution:

0 → U → Q∗ ⊕ O → F0,2 → 0

Proof. Since the bundle F0,2 admits a unique global section s, and since s
vanishes along a conic C2

0 there is an isomorphism between MX(2; 0, 2) and
H2,0(X) ' P2 (the Hilbert scheme of conics contained in X). The bundle
F0,2 is strictly semistable for c1(F ) = 0.

The exact sequence (1) in this case reads:

(12) 0 → O → F0,2 → JC2
0 ,X

→ 0

Since Ext1(Q∗,O) = 0, any morphism Q∗ → JC2
0 ,X

lifts to a morphism
Q∗ → F0,2. Considering the map O → F0,2 in the exact sequence (12) and
lifting the projection Q∗ → JC2

0 ,X
in the exact sequence (11) we obtain a

surjective bundle map Q∗⊕O → F0,2 whose kernel is isomorphic to U . This
provides the desired resolution. �

4. Elliptic curves

In this section we prove the existence of elliptic curves in X with the
properties required by Case (iii) of Lemma 2.16. In particular the degree
of these curves varies from 7 to 14 and we deal with the case 7 ≤ d ≤ 13
in Proposition 4.1. Case d = 14 is considered in Proposition 4.4 where we
consider also d = 15 which we will need in Section 5.

Proposition 4.1. On the general variety X there exist smooth elliptic
curves Cd1 of degree d for 7 ≤ d ≤ 13. The curve Cd1 is contained in ex-
actly 14− d independent hyperplanes.

We will construct smooth elliptic curves in X by means of the birational
map ϕ : V = V5 99K X described in Subsection 2.4.
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Lemma 4.2. Let S = S5 be a fixed hyperplane section of V and fix nota-
tion as in Subsection 2.4. The irreducible component H5,0(V ) of the Hilbert
scheme containing smooth rational normal quintics in V has dimension 10 at
general [C5

0 ] and there is a dominant rational map ζ : H5,0(V ) 99K Hilb5(P2)
defined by ζ : [C5

0 ] 7→ e1 + · · ·+ e5.

Proof. Set C = C5
0 . First notice that by the Riemann–Roch formula we have

expdim(TH5,0(V ),[C]) = 10 because deg(NC,V ) = 10 so that χ(NC,V ) = 10.
Since C ⊂ S, we have the exact sequence of normal bundles:

0 → NC,S → NC,V → (NS,V )|C → 0

Now, computing (2` − b1)2 = 3, after the identification C ' P1 we get
NC,S ' OP1(3) and we obtain an exact sequence:

0 → OP1(3) → NC,V → OP1(5) → 0

Therefore h0(NC,V ) = χ(NC,V ) = 10 so H5,0(V ) is smooth and 10-
dimensional.

Let P(H0(V,OV (1))) = P6. Notice that, once we fix the hyperplane section
S, for any curve C, the intersection C ∩ S gives 5 points spanning P4 ⊂ P6.
Conversely, given any P4 ⊂ P6, there is a curve C such that the spaces 〈C〉,
〈S〉 span P6. Fixing S thus provides a birational map H5,0(V ) 99K G(P4,P6).

Since dim(H5,0(V )) = dim(Hilb5(P2)) = 10, we have to prove that the
map ζ is generically finite. So we fix e = (e1, . . . , e5) and we consider the
space P4

e = 〈e1, . . . , e5〉. Varying a hyperplane section S′ of V in the pencil
of hyperplanes containing P4

e, we obtain a ruled surface Sje consisting of
exceptional lines in S′ of type b′j . The ruled surface Sje is not a cone for
there are finitely many lines through any point in V (see [IP99, Page 64],
[FN89]). Thus its dual variety is a hypersurface in P̌6.

Now given a curve C ⊂ S′, we let C = 2` − b′1. So we have ζ(C) =
e1 + · · · + e5 if and only if there is a hyperplane section S′ = P5 ∩ V with
P5 ⊃ P4

e and such that P5 contains the curve of class 2`− b1. This happens
if and only if the hyperplane P5 is tangent to the ruled surface S1

e . Being
the dual variety of S1

e a hypersurface, it intersects the general pencil of P5’s
containing P4

b in a finite set of points. �

Lemma 4.3. Let S be a fixed hyperplane section and fix notation as in
Definition 2.13. Define the following linear systems:

L9 = 4`− 2b1 − 2b2 − b3 − b4 − e1 − e2 − e3 −
∑

fj(13)

L10 = 5`− 2
∑

bi − 2e1 − e2 − e3 −
∑

fj(14)

L11 = 4`− 2b1 − 2b2 − b3 − b4 − e1 − e2 −
∑

fj(15)

L12 = 5`− 2
∑

bi − 2e1 − e2 −
∑

fj(16)

L13 = 4`− 2b1 − 2b2 − b3 − b4 − e1 −
∑

fj(17)

Then each Ld has positive dimension and contains a smooth element C̃d1 .
The curve ϕ(C̃d1 ) is a smooth elliptic curve in X of degree d contained in
precisely 14− d independent hyperplanes.
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Proof. The linear systems Lj just defined have positive dimension by count-
ing parameters, indeed it suffices to compute the expected dimension of the
linear system of curves in P2 with prescribed nodes and passing through
assigned points.

For odd (resp., even) d, Ld contains a smooth element C̃d1 if and only
if there exists an irreducible plane quartic with nodes only at B1 and B2

(resp., an irreducible plane quintic with nodes only at B1, . . . , B6 and the
point in P2 corresponding to e1). It suffices to project an elliptic normal
quartic (resp., quintic) in P3 (resp., P4) from a general point (resp., line) to
obtain such a curve.

The degree of ϕ(C̃d1 ) is easily computed as d = Ld · L where L is the
linear system of Definition 2.13.

Since any elliptic curve of degree d ≤ 13 is contained in a hyperplane
section S22 of X, we have that h0(JCd

1 ,X
(1)) = h0(JCd

1 ,S22
(1)) + 1. Us-

ing the map ϕ and the fixed isomorphism S → BlB1,...B4(P2) we have
h0(JCd

1 ,S22
(1)) = h0(P2,L − Ld). We are then reduced to compute the

dimension of the following linear systems on P2:

L −L9 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − e2 − e3 − 2e4 − 2e5(18)

L −L10 = 4`−
∑

bi − e2 − e3 − 2e4 − 2e5(19)

L −L11 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − e2 − 2e3 − 2e4 − 2e5(20)

L −L12 = 4`−
∑

bi − e2 − 2e3 − 2e4 − 2e5(21)

L −L13 = 5`− b1 − b2 − 2b3 − 2b4 − e1 − 2e2 − 2e3 − 2e4 − 2e5(22)

By Lemma 4.2, we can can compute the dimension of these linear sys-
tems choosing the points corresponding to the ei’s in a Zariski open set of
Hilb5(P2). Notice that expdim(L −Ld) = 13− d, so we only need to check
that expdim(L −Ld) = dim(L −Ld).

This we can do using Cremona transformations on P2. For (18) consider
the Cremona transformation γ9 associated the linear system 2`−b3−b4−e4.
Any curve in L−L9 touches a conic through b3−b4−e4 in 4 points. Further,
any curve in L −L9 touches the line 〈B3, B4〉 (resp., 〈B4, e4〉, 〈B3, e4〉) in a
single further point e′4 (resp., b′3, b

′
4) so under γ9 the linear system L −L9

is mapped to 4`− b1− b2− b′3− b′4− e1− e2− e3− e′4− 2e5. Now the points
e1, . . . , e5 lie in general position by Lemma 4.2 while the points bi can be
chosen generically for we can define S to be the blow–up of P2 at a general
4-tuple of points.

Since we now have the linear system of plane quartics with only one node
and passing through 8 general points, we conclude h0(P2,L −L9) = 4.

In Case (20), γ11 is defined as the Cremona transformation associated to
2`− b3 − b4 − e3, sending L −L9 to 4`− b1 − b2 − b′3 − b′4 − e1 − e2 − e′3 −
2e4 − 2e5. Now take γ11 = γ2`−e3−e4−b1 . Then γ′11 ◦ γ11 sends L − L9 to
3` − b2 − b′3 − b′4 − e1 − e2 − e′3 − e′′4 − e′′5. Now 8 general points impose 8
linearly independent conditions on the 10-dimensional space of plane cubics.

In Case (22) we put γ13 = γ2`−b3−b4−e2 and γ′13 = γ2`−e3−e4−e5 . The linear
system L −L13 is mapped by γ′13 ◦ γ13 to 2`− b2 − b2 − b′3 − b′4 − e1 − e′2.
Since there is no conic through 6 general points we are done.
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In Case (19) put γ10 = γ2`−e3−e4−e5 . The lines 〈e3, e4〉 and 〈e3, e5〉 give
rise to two extra points e′4 and e′5, so we have to compute h0(3` −

∑
bi −

e2 − e′4 − e′5) = 3.
In Case (21) put γ12 = γ2`−e3−e4−e5 . Here we have no extra points and

the statement follows since h0(2`−
∑
bi − e2) = 1. �

Proof of 4.1. The curve C7
1 exists according to [Kuz96] and [Fae04], in fact

it is just the zero locus of a general global section s ∈ H0(E∗) ' k8. For
C8

1 , consider a homomorphism α : K → U , where α ∈ Hom(K,U) ' B∗.
This morphism is surjective whenever α lies outside the discriminant curve
det(Ψ>) ⊂ P(B∗) (cfr. Lemma 3.1), so for general α we get a rank-2 locally
free sheaf F8 = ker(α). It follows easily from Lemma 2.12 that c1(F8) = −1
and c2(F8) = 8. Taking global sections of F ∗

8 and using the identifications
of Lemma 2.7 we get:

H0(F ∗
8 ) ' ker

(
α : S4B/F → S3B/F (B∗)

)
For general α this map is surjective so h0(F ∗

8 ) = 7 and F ∗
8 is globally

generated since K∗ is. Therefore a general section of F ∗
8 vanishes along the

required curve C8
1 .

For 9 ≤ d ≤ 13 the statement follows from Lemma 4.3. �

Proposition 4.4. On the general variety X there exists a smooth elliptic
curve Cd1 of degree d for d = 14, 15. In both cases Cd1 is non degenerate.

Proof. It is well–known that there exist smooth elliptic normal curves of
degree 7 in V . However we sketch a quick proof. Denoting by UV (resp.
QV ), the universal rank-2 subbundle (resp., the universal rank-3 quotient
bundle) on G(k2, k5) restricted to V , one proves that for a general map
α : U⊕2

V → (Q∗
V )⊕2, the sheaf coker(α)⊗OV (1) is a globally generated rank-

2 bundle on V whose general section vanishes on the required curve D7.
Take now a hyperplane section S, denote by d1, . . . d7 the intersection

points of D7 with S and recall the notation from Definition 2.13.
Choose a smooth curve C5

0 in the linear system 2` − b1 − d1 − d2 − d3.
Clearly this linear system has positive dimension. The curve D7 is mapped
by ϕ|L | to a smooth elliptic curve of degree 15 for it intersects C5

0 at 3
points with normal crossing. This curve is non degenerate since D7 is non
degenerate too.

Moving the hyperplane section S in P̌6 we can suppose that the point d4

coincides with the point f1. Taking again C5
0 ∈ |2` − b1 − d1 − d2 − d3| we

have that D7 is now mapped by ϕ|L | to a non degenerate smooth elliptic
curve of degree 14, indeed it intersects C5

0 (resp. T1) at 3 points (resp. 1
point) with normal crossing. �

Proposition 4.5. Let 7 ≤ d ≤ 15 and let Fd be the rank-2 vector bundle
over X associated to the elliptic curve Cd1 constructed as above. We have
c1(Fd) = −1 and c2(Fd) = d. Fd is stable for any d and aCM for 7 ≤ d ≤ 14.
Moreover we have h0(F ∗

15) = h1(F ∗
15) = 1.

Proof. Set C = Cd1 . The numerical invariants of the bundle Fd are obvious
and stability follows at once by Hoppe’s criterion.

By Serre duality one has h2(F ∗
d ) = h1(Fd(−1)) = h1(F ∗

d (−2)) = 0 by (1).
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Taking twisted sections in sequence (1) we get that Fd is aCM if and
only if h1(Fd(1)) = 0 i.e. if and only if h1(JC,X(1)) = 0. Indeed in this
case the map H0(OX(1)) → H0(OC(1)) is surjective. This implies that
H0(OX(t)) → H0(OC(t)) is surjective for all t ≥ 1, so h1(JC,X(t)) = 0 for
t ≥ 1 so by (1) we get h1(Fd(t)) = 0 for t ≥ 1. For t ≤ 0 this trivially holds
too, so Fd is aCM by Serre duality.

This happens precisely when h0(JC,X(1)) = 14 − d, so the conclusion
follows from Propositions 4.1 and 4.4. �

Theorem 4.6. Let 8 ≤ d ≤ 15. Then the bundle Fd of Proposition 4.5 is
isomorphic to the cohomology of a monad:

(23) E⊕d−8 βd−→ K⊕d−7 αd−→ U⊕d−7

For d = 7 the bundle F7 is isomorphic to E.

Proof. By Hirzebruch–Riemann–Roch we get the following equalities:

χ(Q∗⊗Fd) = d− 7(24)

χ(U ⊗Fd) = d− 7(25)

χ(E⊗Fd) = d− 8(26)

Now recall that the vector bundles U , Q∗, E and Fd are stable so by
[Mar81, Theorem 1.14] any tensor product between them is also a stable
vector bundle. This implies at once the following vanishing results:

h0(Q∗⊗Fd) = 0

h0(U ⊗Fd) = 0

h0(E⊗Fd) = 0

Serre duality implies the following additional vanishing results:

h3(Q∗⊗Fd) = h0(Q⊗Fd) = 0 because µ(Q⊗Fd) = −1/4(27)

h3(U ⊗Fd) = h0(U∗⊗Fd) = 0 because µ(U∗⊗Fd) = −1/6(28)

h3(E⊗Fd) = h0(E∗⊗Fd) = 0 because c2(E) 6= c2(Fd)(29)

where (29) follows, since µ(E) = µ(Fd) = −1/2, but c2(E) = 7 6= d =
c2(Fd), so Hom(E,Fd) = 0. Now consider the tensor product of the bundle
Fd by the sequences (6) and (9), and by the dual of the sequence (6). Since
h0(Fd) = 0 and h1(Fd) = 0 we have the equalities:

h1(Q∗⊗Fd) = h0(U∗⊗Fd) = 0 by (28)

h1(U ⊗Fd) = h0(Q⊗Fd) = 0 by (27)

h1(E⊗Fd) = h0((E′)∗⊗Fd)

The group H0((E′)∗⊗Fd) vanishes as well because E′ is also a stable
bundle and we have µ((E′)∗⊗Fd) = −1/3. Summing up we have computed:

h2(Q∗⊗Fd) = d− 7

h2(U ⊗Fd) = d− 7

h2(E⊗Fd) = d− 8
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This implies that Fd is isomorphic to the cohomology of a monad of the
form (23). Clearly for d = 7 the above argument implies E ' F7. �

Theorem 4.7. Let 7 ≤ d ≤ 15 and let X be general. Then the Hilbert
scheme Hd,1(X) of curves in X of degree d and arithmetic genus 1 is smooth
of dimension d at a generic point. The moduli space MX(2;−1, d) is smooth
of dimension 2d− 14 at a generic point.

Proof. Let Z = Cd1 be a curve of degree d and arithmetic genus 1 contained
in X, and consider the vector bundle Fd associated to Z.

Tensoring by Fd the exact sequence (1) and exact sequence defining Z ⊂
X, after the isomorphism (2), we get the following exact sequences:

0 → Fd → E nd(Fd) → F ∗
d ⊗JZ,X → 0(30)

0 → F ∗
d ⊗JZ,X → F ∗

d → NZ,X → 0(31)

Taking global sections we get h2(X,E nd(Fd)) = h1(Z,NZ,X)). This
means that MX(2;−1, d) is unobstructed at [Fd] if and only if Hd,1(X) is
unobstructed at [Z].

Consider now the monad (23) given by Theorem 4.6 and denote by W 1
d

(resp., W 2
d ) the vector space H2(Q∗⊗Fd) ' kd−7 (resp., H2(U ⊗Fd) '

kd−7). An element (m,n) of the group SL(W 1
d )× SL(W 2

d ) acts on the space
P(Hom(K,U)⊗Hom(W 1

d ,W
2
d )) taking αd to n ◦ αd ◦ m−1. This action is

free for general αd. Taking now the functor Hom(E,−) we get a morphism:

Hom(K,U)⊗Hom(W 1
d ,W

2
d ) → A∗⊗A∗⊗Hom(W 1

d ,W
2
d )(32)

Recall now from (5) that Hom(K,U) ' B∗. Hence an element αd in the
vector space Hom(K,U)⊗Hom(W 1

d ,W
2
d ) can be seen as a map W 1

d → W 2
d

with entries in B∗. The morphism (32) takes the map αd to a 4(d − 7) ×
4(d − 7) square matrix W 1

d ⊗A → W 2
d ⊗A∗ whose entries are given by

Ψ>⊗ id(W 1
d )∗ ⊗ idW 2

d
. Denote this matrix by Ψ>(αd) (see Lemma 3.1).

Consider the sheaf ker(αd : W 1
d ⊗K → W 2

d ⊗U). The above discussion
implies that there exists an injective map βd : Ed−8 ↪→ ker(αd) if and only
if rk(Ψ>(αd)) ≤ 4(d − 7) − (d − 8) = 3d − 20. Being Fd stable, there is a
unique βd up to isomorphism since h2(E⊗Fd) = d− 8.

Summing up, there exists an open neighbourhood at [Fd] of an irreducible
component of the moduli space MX(2;−1, d) which is isomorphic to the set:

M(d) = {[αd] ∈ P(B∗⊗Hom(W 1
d ,W

2
d )) |

| rk(Ψ>(αd)) =3d− 20}/SL(d− 7)× SL(d− 7)

For sufficiently general Ψ> : B∗ → A∗⊗A∗ the variety M(d) admits
smooth points, indeed it is obtained cutting the smooth subset of the variety
of (3d− 20)-secant (3d− 19)-spaces to the Segre of P4d−27 × P4d−27 with a
sufficiently general linear space.

It is easy to check that the dimension of M(d) at a smooth point [α′d] is
2d− 14, so the dimension of MX(2;−1, d) at the bundle [F ′

d] corresponding
to [α′d] is also 2d − 14. Thus taking a section of the general bundle F ′

d we
obtain a curve (Z)′ with h1(N(Z)′,X) = 0, so h0(N(Z)′,X) = d. Then the
Hilbert scheme Hd,1(X) is d-dimensional and smooth at [(Z)′]. �
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End of the proof of (2.16). Consider a general hyperplane section S22 of X.
It is a K3 surface of Picard number ρ(S22) = 1. Consider then Fd, as
defined in Proposition 4.5. Restricting Fd to S22 we get a stable rank-2
vector bundle on S22. The moduli space MS22(2;−1, d) is then smooth and
projective of dimension −χ(End(S22, Fd))−2. It is immediate to check that
dim(MS22(−1, d)) = 4d− 28. Hence d ≥ 7. �

5. Canonical and Half canonical curves

In this section we will prove the existence of the bundles of Cases (iv) and
(v) of Lemma 2.16. Case (v) will be dealt with in Subsection 5.1 while Case
(v) is treated in Subsection 5.2.

5.1. Half–canonical curves. We will prove the existence of a smooth half–
canonical curve C59

60 by a deformation argument.

Lemma 5.1. There exists a smooth curve Z = C59
60 in X of degree 59 and

genus 60, given as the zero locus of a section of an aCM vector bundle
F−1,15(2). We have ωZ ' OX(2)|Z . The aCM bundle F−1,15 specializes to
the non–aCM bundle F15.

Proof. Recall by Proposition 4.4 that there exists an elliptic curve C =
C15

1 such that C is contained in no hyperplane and h1(JC,X) = 1. The
vector bundle F ∗

15 then has a unique section vanishing along C according to
Proposition 4.5.

Now by Theorem 4.6 the moduli space MX(2;−1, 15) is smooth and 16-
dimensional at a general [F15]. On the other hand, consider the irreducible
component of MX(2;−1, 15) containing [F15] and an an open neighbourhood
of [F15] contained in this component. Consider a point [F ′

15] belonging to
this neighbourhood, and represented by a stable bundle F ′

15, where F ′
15 is

not isomorphic to F15.
Now suppose F ′

15(1) has a nontrivial global section s, and recall that
h0(F15) = 0 by stability. The zero locus of s would then be a curve C ′ of
degree 15 and arithmetic genus 1. Therefore s would give a point [C ′] in
H15,1(X). The point [C ′] does not coincide with [C], for otherwise JC′,X '
JC,X would yield F ′

15 ' F15.
Being H15,1(X) smooth of dimension 15 at [C], the above discus-

sion proves that the map τ : H15,1(X) → MX(2;−1, 15) is an open
embedding at [C] and its image is the codimension-1 locus {[F ′

15] ∈
MX(2;−1, 15)|h0(F ′

15(1)) 6= 0}. So for general [F ′
15] we will have

h0(F ′
15(1)) = 0.

Now since χ(F ′
15(1)) = 0 we also get h1(F ′

15(1)) = 0. Therefore we put
F−1,15 = F ′

15 and F−1,15 is aCM. Finally, by Castelnuovo–Mumford regu-
larity F−1,15(2) is globally generated, so a general section vanishes along a
smooth curve Z with the required invariants. �

Remark 5.2. Any aCM stable bundle of type F−1,15 is the cohomology of
a monad of type (23) with d = 15. Indeed it suffices to apply the proof of
Theorem 4.6 to F−1,15.
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5.2. Canonical curves. Here we will prove the existence of a smooth
canonical curve in X by exhibiting the bundle F0,4 of Lemma 2.16.

Lemma 5.3. Given a general homomorphism α : U⊕2 → (Q∗)⊕2, the sheaf
coker(α) is a vector bundle of type F0,4.

Proof. Define the 2-dimensional vector spaces W1 and W2 so that α :
W1⊗U → W2⊗Q∗. Let p1 : k → W1 (resp., p2 : W2 → k) be an element
of P̌(W1) (resp., an element of P(W2)). To the pair (p1, p2) we associate the
map U → Q∗ and we get the morphism ηα:

ηα : P1 × P1 → P2 = P(B)

(p1, p2) 7→ (p2 ⊗ idQ∗) ◦ α ◦ (p1 ⊗ idU∗)

For general α the map ηα is a 2 : 1 cover. Suppose now that α is not
injective as a bundle map at a given point x of X. Then there exists p1 :
k → W1 such that, for any p2 : W2 → k, the map ηα(p1, p2) is zero over
x. Equivalently x lies in the conic whose ideal is coker(ηα(p1, p2)). Being
ηα a finite map, this means that x lies in the pencil of conics parameterized
by p2 ∈ P(W2), contradicting Lemma 3.2. Therefore coker(α) is locally free
and has the required Chern classes by a straightforward computation.

From the exact sequence:

0 → U⊕2 → (Q∗)⊕2 → F0,4 → 0

we see immediately that h0(F0,4) = 0 and h1(F0,4(t)) = 0 for any t ∈ Z,
indeed U and Q∗ are aCM bundles.

Therefore F0,4 is stable and aCM, indeed Serre duality gives h2(F0,4(t)) =
h1(F0,4(−1− t)) = 0 for all t ∈ Z. Finally, one can compute the following:

h1(Q∗⊗F0,4(1)) = 0

h2(U ⊗F0,4(1)) = 0

h3(E⊗F0,4(1)) = 0

So by Corollary 2.15 we get that F0,4(1) is globally generated hence the
zero locus of its general global section is the required canonical curve. �

Lemma 5.4. Any aCM stable vector bundle of type F0,4 is the cokernel of
a map α : U⊕2 → (Q∗)⊕2.

Proof. The argument is analogous to that of Theorem 4.6. In this case we
find:

hp(U ⊗F0,4) = 0 for p 6= 1

hp(K ⊗F0,4) = 0 for p 6= 1

hp(E⊗F0,4) = 0 for all p

We conclude h1(U ⊗F0,4) = −χ(U ⊗F0,4) = 2 and h1(K ⊗F0,4) =
−χ(K ⊗F0,4) = 2, so the statement follows from Theorem 2.14. �

Remark 5.5. Summing up we found that an open subset of a component
of MX(2; 0, 4) is isomorphic to an open subset of the variety of Kronecker
modules

P(W ∗
1 ⊗W2⊗B)/SL(W1)× SL(W2)
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where W1 and W2 are 2-dimensional vector spaces. In particular it is uni-
rational and generically smooth of dimension 5.
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