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1. Introduction

In the early forties, Niven gave some fundamental contributions to the study of polynomials with
quaternionic coefficients. His first work on quaternionic equations was Niven (1941), and later in
Niven (1942) and Eilenberg and Niven (1944), coauthored with Eilenberg, he gave a first proof of
the fundamental theorem of algebra in the ring of polynomials with quaternionic coefficients. After
a few decades of relative oblivion, in recent years there has been a rebirth of interest in the study
of such polynomials. This interest originated from the desire to extend fundamental properties of
complex polynomials (see Pogorui and Shapiro, 2004; Serodio and Siu, 2001), but also received an
impulse from the development of a new theory of regular functions of a quaternionic variable, of
which quaternionic polynomials are an important example (see Gentili and Stoppato, 2008; Gentili
and Struppa, 2006, 2007, 2008; Gentili et al., 2008). Most of these papers analyzed the structure of the
set of zeros of suchpolynomials. In particularGentili et al. (2008) offers a newproof of the fundamental
theoremof algebra,while Gentili and Stoppato (2008), Pogorui and Shapiro (2004) and Serodio and Siu
(2001) explain in detail the nature of such zeros; it was in Pogorui and Shapiro (2004), for example,
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that the authors first identified the phenomenon of spherical zeros. Finally, Gentili and Struppa (2008)
is a study of factorization of quaternionic polynomials and of the role that a nonstandard notion of
multiplicity of zeros plays.
In this paper we continue this analysis but focus instead on issues of division within the ring of

polynomialsH[q]. In the better known case of complex polynomials, divisibility and factorization are
essentially equivalent, but this turns out not to be the case when we move to the noncommutative
situation. In Section 2, we briefly describe the Euclidean division algorithm in H[q]; our discussion
here is a special case of the more general treatment given by Ore in Ore (1933), but we include it
because of the simpler form it assumes in the quaternionic setting. In Section 3 we prove a version of
the Bezout theorem, and we show its dependence on issues of commutativity.
Finally, we conclude with a short section in which we introduce Gröbner bases for the ideals in

H[q], and we fully identify the module of syzygies for any list of polynomials, giving a minimal set of
generators in the linear case.

2. Division algorithm for quaternionic polynomials

Let H denote the algebra of real quaternions. It is generated by three elements i, j, k, called
imaginary units since they satisfy the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
and ki = −ik = j. Elements inH can be written as q = x0+ ix1+ jx2+ kx3 where the xl are real. If we
denote by S the 2-dimensional sphere of imaginary units of H, i.e. S = {q ∈ H | q2 = −1}, then every
nonreal quaternion q can be written in a unique way as q = x + yI, with I ∈ S and x, y ∈ R, y > 0.
Wewill refer to x = Re(q) as the real part of q and y = Im(q) as the imaginary part of q. The algebra of
quaternions is a division algebra in the sense that every nonzero element q = x+ yI ∈ H∗ = H \ {0}
has a (bilateral) inverse given by q̄/|q|2 where q̄ = x− yI and |q|2 = x2+ y2. Technically, polynomials
over the quaternions could be finite sums of elements of the type aqn or qna, with a ∈ H, or, more
in general, words of the type a0qa1q · · · an−1qan with a` ∈ H. However, only powers of q with right
coefficients inH are regular quaternionic functions. In light of this observation, and consistently with
the definition given in Lam (1991), we set

Definition 1. The ring of regular quaternionic polynomials with right coefficients H[q] is the left
H-vector space whose elements are of the type

{∑d
n=0 q

nan | an ∈ H, d ∈ N
}
endowed with the

noncommutative product defined by the (left) linear extension of

(qnan) ∗ (qmam) := qn+manbm.

Remark 2. It is important to note that the evaluation map εα : H[q] → H defined by εα(F) = F(α) is
not an algebra homomorphism, since for example εα((q− β) ∗ (q− α)) = α2− α(α+ β)+ βα 6= 0,
unless of course α and β commute.

The theory of zero sets for regular quaternionic polynomials is very different from that of complex
polynomials. While the fundamental theorem of algebra still holds in H[q], (Gentili et al., 2008),
quaternionic polynomial equationsmay admit an infinite number of solutions (see for example Gentili
and Struppa, 2008).
Strictly related to the problem of finding roots of a regular polynomial is the factorization

problem inH[q]. Theorem 2.8 of Gentili and Struppa (2008) essentially says that every monic regular
polynomials can be written as a product P(q) ∗ Q (q)where

P(q) = (q− α1) ∗ · · · ∗ (q− αn)

is such that αi+1 6= ᾱi for all i = 1 . . . n− 1, so that its zero set is composed by isolated roots (see
again (Gentili and Struppa, 2008) for a formula to find the roots givenαi), whileQ (q) is a commutative
polynomial given by

Q (q) = (q2 − q(2Re(β1))+ |β1|2) · · · (q2 − q(2Re(βm))+ |βm|2), for some β1, . . . , βm ∈ H.

As in every noncommutative ring, ideals ofH[q] can be left, right or bilateral, depending on which
side one allowsmultiplication. For the sake of simplicity, most of the times wewill consider left ideals
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only. Unless otherwise specified, our results on left ideals will translate into the corresponding ones
for right ideals in a straightforward manner. Let us recall some basic definitions. If not differently
indicated, all polynomials we consider will be monic.

Definition 3. We say that a regular polynomial G divides F on the left (resp. on the right) if there
exists A ∈ H[q] such that F = G ∗ A (resp. F = A ∗ G). Let F1, . . . , Fn be polynomials of H[q]. Their
Greatest Common Left Divisor, shortly GCLD(F1, . . . , Fn), is the unique monic element D ∈ H[q] such
that D divides Fi on the left for every i, and such that every other left divisor of all Fi divides D on the
left. Similarly one defines the greatest common right divisor GCRD(F1, . . . , Fn).

In general it can be hard to calculate the GCLD of two polynomials due to the fact that one cannot
rely on factorization. Performing a full factorization of a polynomial can be very difficult if one does
not know its roots, even when the coefficients are chosen in a commutative field. Here we also have
the issue of nonuniqueness. We need a better, algorithmic way of calculating the GCLD. As in the
commutative case K[x], where K is a field, one can use the Euclidean Division algorithm. We first
observe that H[q] is a (left and right) Euclidean domain.

Proposition 4 (Euclidean Division). Let F ,G be regular polynomials. Then there exist Q , R,Q ′ and R′ in
H[q], withmax(deg(R), deg(R′)) < deg(G), such that

F = Q ∗ G+ R and F = G ∗ Q ′ + R′.

Moreover, such polynomials are uniquely determined.

Proof. The existence is proved by performing Euclidean division on F and G in the same way one
would do it in the commutative case. Note that the two polynomials can always be chosen to bemonic,
so the division of the terms of F by the leading power ofG is unambiguous. The only differencewith the
commutative case is that in order to get Q and R versus Q ′ and R′, one has to perform multiplications
of partial quotient respectively to the right or to the left by G. Uniqueness follows easily from the fact
that (H[q], ∗,+) is an integral domain, and from the fact that the degrees of R and R′ are both smaller
than the degree of G. �

Corollary 5 (Remainder Theorem). Let F(q) be a regular polynomial and let α ∈ H. Then there exists
Q ∈ H[q] such that F(q) = (q− α) ∗ Q (q)+ F(α).

Because of Remark 2, the usual remainder theorem holds only for left division (see also Wedderburn,
1921), which is an immediate consequence of Proposition 4.

3. Bezout’s theorem

In order to give an algorithm for the calculation of the greatest common divisor using Euclidean
division, we introduce the following notation. If F = Q ∗G+R and F = G∗Q ′+R′ as in Proposition 4,
we define

modr(F ,G) = R, divr(F ,G) = Q , modl(F ,G) = R′, divl(F ,G) = Q ′.

Note that the subscripts refer to the side with respect to which division is performed, although Q and
Q ′ are, technically speaking, left and right quotients respectively.

Theorem 6 (Calculation of GCLD). Let F ,G be nonzero regular polynomials. Then the following list of
instructions returns their greatest common left divisor in a finite number of steps:

Input: F ,G ∈ H[q] \ {0}
Output: GCLD(F,G)
Initialization: a := F , b := G
•While b 6= 0 Do

t := b
b := modl(a, b)
a := t

• Return a.
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Proof. The proof is formally the same as in the commutative case, only one needs to keep all factors
in the correct position, either to the left or to the right. Note that termination is guaranteed by the fact
that the remainder sequence has strictly decreasing degrees. �

Remark 7. In order to calculate the greatest common right divisor, the situation is completely
symmetric. It is indeed sufficient to replace the second step of the ‘‘while" loop in Algorithm 6 with
b := modr(a, b).

Remark 8. A different algorithm based on the use of Gröbner bases will be provided in the next
section.

Euclidean division is a very powerful tool that also allows to express the greatest commondivisor as an
explicit combination of the two polynomials. This is true in every commutative Euclidean domain, and
the corresponding algorithm in H[q] is virtually identical. After completing all the iterated divisions
of Algorithm 6, one ‘‘climbs" back up to the top with simple algebraic steps. The only important
observation is that quotients of the iterated divisions are right multiples, so that one ends up with
a right linear combination of F and G. We do not prove the following result, which also appears in
Wedderburn (1921), giving rather an example of calculation which illustrates the procedure.

Proposition 9. Let F and G be nonzero regular polynomials. Then there exist A, B ∈ H[q] such that
GCLD(F ,G) = F ∗ A+ G ∗ B.

Example 10. Consider F(q) = q∗(q− i)∗(q− j) = q3−q2(i+ j)+qk and G(q) = q∗(q−k) = q2−qk.
In order to findmodl(F ,G)we need to perform left division of F by G. This gives

F = G ∗ (q− i− j+ k)+ q(k− j+ i− 1). (1)

Since the first remainder R1 = q(k+ j− i− 1) is not zero, we need to perform yet another division.
We use the remainder to divide G and we see that

G = R1 ∗ (q− k)(k+ j− i− 1)−1, (2)

which ends the iteration since the new remainder is zero. Keeping the common divisor monic, and
from (1), we have

q = GCLD(F ,G) = R1(k+ j− i− 1)−1 = F ∗ (k+ j− i− 1)−1

−G ∗ (k+ j− i− 1)−1(q− i− j+ k).

Definition 11. Given n polynomials in H[q], we define recursively

GCLD(F1, . . . , Fn) = GCLD(GCLD(F1, F2), F3, . . . , Fn).

We are now ready to state the following theorem.

Theorem 12 (Bezout Theorem for Regular Polynomials). Let F1, . . . , Fn, n > 1, be nonzero regular
quaternionic polynomials. The following facts are equivalent:
(a) F1, . . . , Fn have no common roots in H
(b) GCLD(F1, . . . , Fn) = 1
(c) There exist A1, . . . , An regular polynomials such that F1 ∗ A1 + · · · + Fn ∗ An = 1.

Proof. (a)⇒ (b) LetD := GCLD(F1, . . . , Fn). IfD 6∈ H, then it has at least a rootα ∈ H, sowe canwrite
D = (q− α) ∗ D′. This implies that α is a common root for the polynomials, which is a contradiction.
Hence D ∈ H and since it is monic, D = 1.
(b) ⇒ (c) The case n = 2 is an instance of Proposition 9. For n > 2, consider the n − 1 polynomials
GCLD(F1, F2) and F3, . . . , Fn which have no common roots. Using induction on n and then again
Proposition 9, one obtains

1 = GCLD(F1, F2) ∗ A+ F3 ∗ A3 + · · · + Fn ∗ An = (F1 ∗ A′1 + F2 ∗ A
′

2) ∗ A+ F3 ∗ A3
+ · · · + Fn ∗ An,

which is the thesis with Ai := A′i ∗ A, i = 1, 2.
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(c)⇒ (a) Suppose the polynomials have a common root α ∈ H. Then, using Corollary 5, we have that
for every index i, Fi(q) = (q− α) ∗ F ′i (q) for some F

′

i . We can write then

(q− α) ∗ (F ′1 ∗ A1 + · · · + F
′

n ∗ An) = 1

which is absurd, because the degree of a regular product is the sum of the degrees. �

It is immediate to verify, as a consequence of the previous considerations, that every left or right
ideal of H[q] is principal. We give the statement for left ideals.

Corollary 13. Let I be a left ideal in H[q] and let F1, . . . , Fn be its generators. Let D = GCRD(F1, . . . , Fn).
Then I = H[q]〈D〉.

Remark 14. Observe that a completely symmetric version of Theorem 12 using the greatest common
right divisor could not be given. Indeed, only the equivalence of (b) and (c) can be proved. If
GCRD(F1, . . . , Fn) = 1, one uses again (right) Euclidean divisions to find a combination

∑
i Ai ∗ Fi = 1,

while the opposite implication is immediate to prove. The fact that such conditions are not equivalent
to condition (a) is due to the noncommutativity of the ∗-product and to the fact that roots of regular
polynomials only correspond to left linear factors. The next example will illustrate the situation.

Example 15. Consider F = q2 − q(i + j) + k and G = q2 − q(j + k) − i. The polynomial F vanishes
only at q = i, while the only root of Q is q = k. However, performing iterative right divisions, one gets
that GCRD(F ,G) = q− j = (k− i)−1 ∗ F − (k− i)−1 ∗ G.

4. Gröbner bases for quaternionic polynomials

The theory of Gröbner bases provides a powerful tool to perform effective computations in any
commutative polynomial ring. A classical reference is Kreuzer and Robbiano (2000). Recently, this
theory has been extended to a wider collection of algebras, including the so-called solvable algebras,
or G-algebras. Thanks to the work of Levandovskyy (2005), Gröbner basis algorithms have been
implemented on Singular (Greuel et al., 2005). The libraries for calculations in noncommutative rings
are grouped in its subsystem called Plural (Greuel et al., 2003). A G-algebra A is essentially a quotient
of the ring of noncommutative polynomials K〈x1, . . . , xn〉 modulo a two-sided ideal of relations.
Relations in a G-algebra are of the type

xjxi = cij · xixj + dij, 1 ≤ i < j ≤ n, (3)

where cij ∈ K and dij ∈ A satisfy certain ‘‘nondegeneracy" conditions, forwhichwe refer to themanual
of Plural. In particular, a vector space basis for any G-algebra is given by the standard monomials
xa11 · · · x

an
n , a fact which allows one to carry over many of the concepts and algorithms from the com-

mutative theory of Gröbner bases. A key condition which guarantees the termination of Buchberger
algorithm for G-algebras is the fact that, with respect to a given term ordering on the set of standard
monomials, we have that the leading term (LT ) of the polynomials dij satisfies

LT (dij) < xixj, 1 ≤ i < j ≤ n.

Examples ofG-algebras (and quotients ofG-algebras) include theWeyl algebra, the exterior algebra
over a finite-dimensional vector space, the Clifford algebra, and all universal enveloping algebras
associated with simple Lie algebras. The ring of regular polynomials is also a quotient of a G-algebra,
as the following propositions shows. We omit their proofs since they are straightforward.

Proposition 16. LetH be the R-algebra generated by q, i, j, k and satisfying the following relations
(1) qi = iq, qj = jq, qk = kq
(2) ij = −ji, jk = −kj, ik = −ki.
ThenH is a G-algebra.

Notice that the relations of (2) in the above propositionmake i, j and k into anticommutative variables,
while (1) says that q behaves like an indeterminate in a commutative polynomial ring. If we then
introduce the relations i2 = j2 = k2 = −1, we can state the next result.

Proposition 17. LetH be as above and let I be the two-sided ideal ofH generated by (i2+1, j2+1, k2+
1, ij− k, jk− i, ik+ j). Then H[q] ' H/I.
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We recall the following definition, which we present only for left ideals.
Definition 18. Let I be a left ideal in a G-algebra A, and let σ be an order relation on the set of standard
monomials which is compatible with multiplication (i.e., a term order) and such that t > 1 for every
monomial t (i.e., a well order). Denote by LTσ (F) the leading term of an element of A with respect to
such relation. A subset G ⊂ A is called a left Gröbner basis for I if LT (G) = {LTσ (g) | g ∈ G} generates
the leftmonoid (LTσ (f ) | f ∈ I). Moreover, we say thatG is reduced if the leading termof every element
g of G does not divide the monomials of G \ {g}.
Since H[q] is a quotient of a G-algebra, every left or right ideal admits a unique reduced Gröbner

basis with respect, for instance, to the term order given by the extension of q > i > j > k to the set
of terms. Corollary 13 implies the following result.
Proposition 19. Let I = (F1, . . . , Fn) be a right (resp. left) ideal ofH[q]. Then the reduced right (resp. left)
Gröbner basis of any system of generators for I, with respect to any term ordering, is {GCLD(F1, . . . , Fn)}
(resp. {GCRD(F1, . . . , Fn)}).
Proof. Let us prove the statement for a right ideal. If the generators have no common root, Bezout
theorem shows that D = 1 is their greatest common left divisor and I = (1). It is clear that {1} is the
reduced Gröbner basis of I . Suppose now that D := GCLD(F1, . . . , Fn) is not a constant. Since D divides
all generators, then LT (D) divides all their leading terms, which shows that {D} is a Gröbner basis for
I . The fact that it is reduced is obvious since it contains only one element. �

Remark 20. Note that, in particular, this proposition allows to calculate greatest common divisors
using Gröbner bases, which is an alternative to Algorithm 6. If one uses Singular, the algebraH[q] can
be introduced via the sequence of commands
ring r=0,(q,i,j,k),dp;
matrix C[4][4]=0,1,1,1,0,0,-1,-1,0,0,0,-1,0,0,0,0;
LIB "nctools.lib";
ncalgebra(C,0);
ideal a=i2+1,j2+1,k2+1,ij-k,jk-i,ik+j;
qring H=twostd(a);

Then only right greatest common divisors can be calculated with the command std which returns a
left Gröbner basis. However, define the following H-antilinear map in H[q]

c

(∑
i

qiai

)
:=

∑
i

qiāi

which clearly satisfies the usual property of a conjugation: c(f ∗g) = c(g)∗c(f ),which in turn allows
to transform a right Gröbner basis calculation into the calculation of a left Gröbner basis for the ideal
generated by the conjugates. In particular, one has

GCLD(f1, . . . , fn) = c(GCRD(c(f1), . . . , c(fn))).
Given a (not necessarily commutative) ring R the question of whether some given elements

f1, . . . , fn of R satisfy relations of the type
a1f1 + · · · + anfn = 0, ai ∈ R,

is highly nontrivial (Bluhm and Kreuzer, 2006). n-tuples (a1, . . . , an) are called (left) syzygies of
f1, . . . , fn and clearly form a (left) R-module. When R is the ring of commutative polynomials, the
algorithm to explicitly construct the syzygies of a set of polynomials is a classical application of the
theory ofGröbner bases. The algorithmhas been extended to the case ofG-algebras (see Levandovskyy,
2005 and references therein). For two-sided syzygies see also the paper Bluhm and Kreuzer (2006)
where the authors present a general technique for noncommutative polynomials and their quotients.
Here we make some observation on the nature of the module of syzygies for polynomials in H[q]
without exploiting such general algorithms. First, note that thanks to the conjugation defined in
the previous paragraph, we have that left syzygy computations are equivalent to right syzygy
computations.Wewill then only focus on left syzygies.We start with a result on the nature of syzygies
of linear polynomials.
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Proposition 21. For every integer i = 1, . . . , n, n > 1, let fi = q − ai ∈ H[q] where ai are distinct
quaternions. Then the H[q] left module of syzygies of (f1, . . . , fn) is generated by

s12 = (q− a2)(ā1 − ā2)e1 + (q− a1)(ā2 − ā1)e2,

together with, if n > 2, the n− 2 polynomials

ti = fi(a1 − a2)−1e1 + fi(a2 − a1)−1e2 + ei, 3 ≤ i ≤ n.

Proof. The fact that the above vectors are syzygies is a straightforward calculation. Notice that the
syzygies ti come from the fact that (x− a1)− (x− a2) = a2 − a1 which implies that (a2 − a1)−1(x−
a1)− (a2 − a1)−1(x− a2) = 1. This in particular says that the ideal (f1, f2) is actually the whole ring.
What we only need to prove, then, is the statement for n = 2: the module of left syzygies Syz(f1, f2)
is such that Syz(f1, f2) = 〈s12〉. Let f , g ∈ H[q] be two polynomials such that f ∗ f1 + g ∗ f2 = 0. Let us
consider the linear polynomial L(q) = f2 ∗ (ā1 − ā2) and let us divide f to the right by L. We obtain

f (q) = Q (q) ∗ L(q)+ R,

where R ∈ H. This implies

f (q) ∗ (q− a1) = Q (q) ∗ L(q) ∗ (q− a1)+ R ∗ (q− a1)
= Q (q) ∗ (q− a2) ∗ (ā1 − ā2) ∗ (q− a1)+ R ∗ (q− a1), (4)

and using the fact that both s12 and (f , g) are syzygies of the pair (f1, f2)we have

−g(q) ∗ (q− a2) = Q (q) ∗ (q− a1) ∗ (ā1 − ā2) ∗ (q− a2)+ R ∗ (q− a1) (5)

from which it follows that

−[g(q)+ Q (q) ∗ (q− a1) ∗ (ā1 − ā2)] ∗ (q− a2) = R ∗ (q− a1). (6)

The previous equation can hold only if the term g(q) + Q (q) ∗ (q − a1) ∗ (ā1 − ā2) is a constant.
However, it is easy to see that the only constants R, S ∈ H satisfying S ∗ (q − a2) = R ∗ (q − a1) are
R = S = 0 which, combined with equation (4) proves the statement. �

The proof of the above result only uses Euclidean division. We now present a more general result
whose proof is based on a classical method due to Schreyer for the construction of syzygies of the
generators of an ideal given a Gröbner basis for the ideal. This is well known in the commutative case
(Kreuzer and Robbiano, 2000), and has been extended to G-algebras (Levandovskyy, 2005).
Consider some nonzero polynomials F1, . . . , Ft ∈ H[q] with degrees n1 . . . nt , and calculate

D = GCRD(F1, . . . , Ft). We can suppose that Fi is monic and that n1 ≥ · · · ≥ nt , so we can define
dij := ni − nj for all 1 ≤ i < j ≤ t . Using Corollary 13 we can write Fi = Hi ∗ D for all i, and find
polynomials Ai such that

∑t
i=1 Ai ∗ Fi = D with the Euclidean algorithm. For all 1 ≤ i < j ≤ t , put

moreover Gij := Fi − qdijFj, and let Cij be such that Gij = Cij ∗ D. With this notation, we state the
following

Theorem 22. The module of left syzygies Syz(F1, . . . , Ft) is generated by the following
(t
2

)
vectors

vij := ei − qdijej − Cij ∗
t∑
k=1

Akek, 1 ≤ i < j ≤ t, (7)

where ei is the ith element of the canonical basis of H[q]t , together with the vectors

wi := ei − Hi ∗
t∑
k=1

Akek, 1 ≤ i ≤ t. (8)

Proof. As a consequence of Proposition 19, the set G = {F1, . . . , Ft ,D} is a left Gröbner basis for the
ideal I := H[q](F1, . . . , Ft), although not a reduced one. We have chosen the Gröbner basis so that it
contains the generators of I , because in this case it is easier to ‘‘lift’’ the syzygies of G to those of I . It
suffices indeed to calculate the S-polynomials of all pairs in G, express them as a combination of the
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basis (which amounts to writing them as multiples of Dwince this is the minimal one), and then read
the relations obtained as combinations of F1, . . . , Ft . Given i < j, take

S(Fi, Fj) = Fi − qdijFj = Cij ∗ D.
Since D =

∑
k AkFk, we can rewrite the above equality as

Fi − qdijFj − Cij
t∑
k=1

Ak ∗ Fk = 0,

which says that vij · (F1, . . . , Ft) = 0. For the second set of syzygies, let d be the degree of D, and
remember that D is monic by definition. Therefore, for all 1 ≤ i ≤ t we have

S(Fi,D) = Fi − qni−d ∗ D = Hi ∗ D− qni−d ∗ D = (Hi − qni−d) ∗ D.
Comparing the second and the last quantity in the above chain of equalities, and rewriting again D,
we obtain the following relation

Fi − qni−d ∗ D− (Hi − qni−d) ∗ D = Fi − Hi ∗
n∑
k=1

Ak ∗ Fk,

which means that wi · (F1, . . . , Ft) = 0. Based on the the discussion in Levandovskyy (2005) (with
an adaptation to the noncommutative case of, for example, Theorem 3.1.8 of Kreuzer and Robbiano
(2000)), these vectors generate the module of left syzygies. �

Remark 23. The generators presented in the previous theorem may not be minimal. The linear
syzygies constructed in Proposition 21 are in fact fewer than the ones provided by Theorem 22.
Consider for example the case t = 2, and Fi = q − ai, with a1 6= a2 ∈ H. While the proposition
only gives the syzygy s12 = (q− a2)(ā1 − ā2)e1 + (q− a1)(ā2 − ā1)e2, the previous theorem would
give 3 redundant generators. However, sinceD = 1 in this case,wehaveHi = Fi,Ai = (−1)i(a2−a1)−1
and C12 = (a2 − a1). Therefore, v12 = 0 and

w1 = w2 = ((a2 − a1 − F1)e1 − F1e2)(a2 − a1)−1 = |a2 − a1|2s12.
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