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1. Introduction and statements of the main results

In this paper we will consider integrals of the calculus of variations of the
type
[ f(Du(x)) dx, (1.1)
2

where f is a function of class C%2(R"), £ is a bounded open set of R* (n = 2),
u: £2 R isascalar function of the Sobolev space H!?(2)for some p > 1, and
Du: 2 —R" is the gradient of u.

We say that a function « is a minimizer for the integral (1.1) if

[f(Dwydx < [f(Du+ Dg)dx Vg CYQ). (1.2)
2 [}

In the following we will be more precise about the class of functions in which to
look for a minimizer.

The existence of a minimizer in the class of Sobolev functions H'?(£2), with a
fixed boundary value, can be proved under the assumption that f'is a strictly con-
vex function satisfying

m|EP<AH S MI+ |E[)  VEERT, (1.3)

for M=m>0 and 1< p < g. The minimizer exists in #?(2) independently
of the assumption in the right hand side of (1.3). In particular, the condition
p = q is not necessary in the existence theory.

On the contrary, the assumption (1.3) with p — ¢ has been considered
crucial in the regularity theory. For example, GIAQUINTA & G1USTI [6] proved that,
under the only assumption (1.3) with p = ¢ > 1, every minimizer of the integral
(1.1) is locally Hélder continuous in £2. More regularity on u (up to C*-regularity
and analiticity) has been obtained under controllated growth conditions on the
second derivatives of f, for example of the type

i
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where M = m > 0 (see for example LADYZHENSKAYA & URAL'TSEVA (Section 6
of Chapter 5 of [9]), Sections 1.10 and 1.11 by MorrEey [13], GiusTti (Section 8
of Chapter 5 of [8])). Note that (1.4) implies that (1.3) holds (with different constants
m, M and up to a linear function) with p = g = 2.

Thus, for example, the following integral in three dimensions

[ @3, + u;, + 103, + ul) dx, (1.5)

or, more generally, an integral of the type (1.1) with f= f(¢,,&,,...,§,) poly-
nomial of different growth in the &;, has minimizers in H"%(£) but, up to now,
it was not known whether they were of class C*(£2), or even of class C°(£2).

Recently the interest on studying problems of the calculus of variations with
P < q has been pointed out. We cite for example [11], where a problem related to
nonlinear elasticity is considered, and Acersr & Fusco [1], who proved a C!*
partial regularity theorem for minimizers of integrals (1.1) with integrands f
twice continuously differentiable, without growth conditions on the second deriv-
atives of f, although f essentially behaves like in (1.3) with p =g. Both
papers deal with vector valued functions u: 2 —RY (N = 1) and quasiconvex
functions f.

Is the condition p = ¢ in (1.3) really necessary for the regularity of minimiz-
ers?

The aim of this paper is to show that the answer is no. In fact we propose an
approach to the (everywhere) local regularity in the scalar case under non-standard
growth conditions on fand on the second derivatives of /. We will prove the follow-
ing theorems A, B, C:

Theorem A. Let f be a function of class C*(R") such that

m 3 (&9 §f(§)§M(1 + ZLE,-I‘U), (1.6)
i=1 . j=1
mAP= X foo® L= M(l + 2 |5,.|qr2> A2, (1.7)
ij=1 =1
for every & and A€ R", where m and M are positive constants and
2= 2 Vji=1,2 1.8
:qj<n_2 J=12,...,0 ()

Q2=gq; VYj, if n=2). Let u be a minimizer of the integral (1.1). Then u¢€
Hu2(2) and for every Q' CC Q thereisan increasing function p: [0, -+ o) >
[0, + o) such that

I Dullp ooy = v (Zl IlulelL"i(!z)> .
iz
Theorem B. Let f be a function of class C*(R") such that

mAP = 2 SOy = MO+ [E7) 2], (1.9
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Jor every E,A€R", with m and M positive constants and

2n

<
2_q<n_2

(1.10)

Q2=<gq, if n=2). Let uc€ HLUQ) be a minimizer of the integral (1.1). Then
uc HL2(Q) and, for Q7 CC Q CC R, thereis an increasing function v : [0, 4- 00)
— [0, + o) such that

| Du HL°°(.Q") = y(| Du ”Lq(:z')) .

Theorem C. Let f be a function of class C*(R") satisfying (1.9) with 0 < m =M
and

2n
n—1

2<q¢< if n>3, (1.11)

while 2<q<3, if n=2 or n=23. Let uc H"X() be a minimizer of the
integral (1.1) (the integral is well defined on H"%(Q) and it is extended (see Section 6)
“by semicontinuity” to H“X(Q)). Then uc H3XQ) and thus, by Theorem B,
uc Hi(2). Moreover, for 2 CC R, there are constants c¢> 0 and
o€ (1,21 such that
q—2+o
[ Dullraen < e |1 + | Dulllaq -

We emphasize the fact that, in Theorem C, the integral (1.1) needs to be ex-
tended from H9() to H'?(2). This problem has been studied in [11]. Here we
show (see Section 6) how to use the extension to get regularity.

Theorems A, B, C are proved respectively in Sections 4, 5, 6. In Section 7
we propose the (standard) use of the H!-*® regularity to get the C* regularity. For
example, by Theorem A, every minimizer of the integral (1.5) is of class C*°(£2).

In Section 7 we discuss also the fact that integrals of the types considered in
Theorems A, B, C may have discontinuous minimizers if the exponent ¢ is large
enough with respect to n.

Let us briefly mention a technical difficulty arising in the proof of Theorem A:
it seems necessary to consider separately each component of the gradient Du to
prove its pointwise local boundness. The prove is divided in # steps. We procede
first to estimate the partial derivative u, of “‘maximal growth” (see Section 4);
then we use the fact that u, € Li5.(£2) to estimate the other partial derivatives,
and so on.

Apart from this and some other difficulties (like lack of homogeneity in the
estimates), we use a method of iteration that can be found in the literature in
similar contexts. We refer to the method of Moser [14] to prove the local bound-
ness of solutions of linear elliptic equations. We refer also to LADYZHENSKAYA &
URAL'TSEVA ([9], Section 3 of Chapter 4) and to GiusTi ([8], Section 8 of Chapter 5).
In particular the book by Grusri is full of suggestions toward the results presented
here.
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2, Euler’s equation

The aim of this section is to derive Euler’s equation in weak form, in particu-
lar to specify the function spaces in which to consider the minimizers and the test
functions.

Lemma 2.1. Let f= f(§) be a function defined on R” such that

@] = M(l + é i§jqu> vi=()eRr, @2.1)

where M >0 and q; =1 for j= 1,2, ..., n. Let&; be a component of the vector
& and let us assume that f is convex with respect to &;. Then the partial derivative Iz

(which exists almost everywhere) satisfies

n -1
&) = e (1 + Zl & qu)( 2 vVEieR”, 2.2)
i=
Jor some positive constant c,. In particular, if q;=gq for every j=1,2,...,n,
then there is a ¢, > 0 such that
@ =c(1 + [EF)  VEER™ 2.3)

Proof. We follow the method of [10] (Step 2 of Section 2). With abuse of nota-
tion let us denote by f(£;) the function f when only the component &; of the vector
& varies. By the convexity of f(£;), and by the assumption (2.1), for every 4> 0
we have

&t h—f&
f5:§f( i)h S&)

LAt 30| &(Y
j=1
§C3 ‘_‘t;;

n 1/q;
For h= (1 + |§,~1"i> we obtain
=1
n n —1/q;
lf5i| = 2¢, <1 + 21 |§j[4j> . <1 + 21 l§j|¢1j>
j= j=
n 1—1/g;
=2¢,4 (1 -+ Z |§j}qi) .
i=1

Lemma 2.2. Let f be a convex function of class C'(R") satisfying (2.1) with
g;=1 for j=1,2,...,n. Let uc H"'(Q) be a minimizer of the integral (1.1)
such that

w €L Yj=12..,n. (2.4)



Regularity of Minimizers 271

Then, for every i=1,2,...,n,

, 11
o DueLs with —rt— =1, @2.5)
1 )

and u satisfies the Euler equation

[ X fiDe, dx=0 VocHE (D) :p. L% Vi (2.6)
2 i=1

Proof. By (2.2) we have

g;—1

00 = (14 5 o) 57
j=1
Since U, € L% for j=1,2,...,n, it follows that

i (Du) € LAa=(Q) = L% ().

Thus (2.5) holds. Now, with a standard argument, by using the mean value theo-
rem, inequality (2.2) and Lebesgue’s dominated convergence theorem, we obtain
the Euler equation with ¢ € C{(£2). Then, by (2.5), (2.6) holds for general ¢ too.

3. Some technical preliminaries

For « = 2 and k> 0 let us denote by g, ,(¢) the function of the real variable z:

|¢]72t if [t]<k
g =3 x— D2 —k)+ k" if >k (3.1)
(x — DKt + k) —k" ifr< —k

Lemma 3.1, For every o =2 and k>0, g, is a Lipschitz-continuous function
that satisfies

2 < 2 / . o«
ga,k(t) = X — lga,k(t) It‘ . (32)

Moreover the derivative g, is increasing with respect to k and

Jimglu) = (6 — D ]2 (3:3)

Proof. A computation gives

(x— D2 if 1] =k

(1) = 3.4
8ault) (x— DK if |t]> k. G4
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Thus g, is a function of class C'(R) and its derivative is bounded with respect
to ¢ (with a constant that depends on k). Moreover, for |¢| = k we have

g |t !
gl @—D[t 2 a—1
Thus (3.2) holds if |#] < k. We will have (3.2) for |7|> k, too, if we prove it

for t > k, since g, is an odd function. For ¢ = k we can compute the maximum
of the ratio

e

gt KTl —Dt—(x—2) k]2
golt)t* Ta—1 t
If & = 2 the maximum is assumed for # =k and is equal to 1/(x — 1). By a
computation we can see that, if « > 2, then the maximum of the right side is

assumed for ¢ = kx/(x — 1) and is equal to 4(1 — 1/x)*/(x — 1). Thus in every
case we have

2 4 1 " ’ &
g =——7 |1 ——) & [#]". (3.5

This implies (3.2), since (1 — 1/x)* << e~'. Now let us show that g,, < g., if
h<k if [t|=<h then g.,=g.,; if |t|{=k then
Gp=(—DF 2= (= DK =gi;
finally, if A< [t| < k, then
g =(— D= (x— D112 =glu@).

This proves that g, is increasing with respect to k. The relation (3.3) follows
immediately from (3.4).

In this section we assume that f is a function of class C*(R") satisfying
f(f)éM(l + Z |£,-{"f) VEERR, (3.6)
Zf;_ Gk =m|A]? VEIER, (3.7

for some constants m and M > 0 and ¢;= 2 forevery j=1,2,...,n. Letus
observe that, by (3.7), there is a constant m’ such that (&) = m’ |£ |2 to within
a linear function.
We will assume also that « € H'*(£) is a minimizer of the integral (1.1) satis-
fying
u €LY Vi=1,2,..,n, (3.8)

so that we can use the Euler equation (2.6).
Fixed sc{l,2,...,n} we denote by e, the unit coordinate vector in the x,
direction. Then we define the difference quotient in the direction e, by

Aju(x) = (ulx + he,) — u(x))/h (39
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for every h # 0. We do not denote explicitly the dependence on s. The function
Ay is defined in 2, = {x€ 2:dist (x, 02) < A} and, forevery j=1,2,...,n,
we have

(Ahu)xj = A,,uxj € qu(gh)' (3.10)

For the properties of the difference quotient see for example Section 7.11 of [7],
or Section 3 of Chapter 3 of [8], or Proposition IX.3 by [2].

Let n€ Ci(£2), =0 in 2. For |k| < (1/4) dist (supp 7, 32) let us define

p=41 —h(nzga,k(Ahu))
where g,, (for x =2 and k> 0) is the function defined in (3.1). We have

Py = A_s(PZs(Ad) Agty, + 2010, 8o s(Ap)) -
By (3.10) ¢,,€ L% for every i=1,2,...,n. We introduce ¢ in the Euler equa-
tion (2.6). With standard computations we obtain

!! Zl Ay fe(Du) (28 p(Ant) Aptt, + 20111,80 s (Ast0)) dx = 0.

Let us compute separately A4, Je(Du):

1
1 fda
A2 (Du) = — 0 f — JeDu + th 4, Du) dt

1
= of 2 fug(Du + th Ay, Du) Ay, dt.
J

Thus, by (3.2), the Cauchy-Schwarz inequality and the Hélder inequality, we obtain

1
[t [ gl Aud) 2 fie, (Du - th A, Du) Ay, Ayt dx
0 2 i

1
= of dt gf — 218 1 (A1) E f;eigj Nx; A,,uxj dx
L7

212
V f g s (Ape) | Apue [“}1/2 dx

l/zx—lﬂ

22

<
“VYa—1

<

1
f Z féifj 77x,- Ahuxj dt
0 ij

1 1/2
{)f ‘nzgzlx,k(dhu) Of Z fétfj Ahux,‘ Ahuxj- dt }
47
1 1/2
. {lAhu l(xdf 2 .ffifj "7x,-77xj dt } dx
hi

=

=t )

[ dt gf 728l (A3t Z ff,-éjAhux,-Ahuxj dx
LJ

1 12
' {df dt _(jf 'Ahu l“ Z f;‘iﬁj "7x,-"7xj dx} .
&)
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We simplify both sides of the inequality and we obtain

1
of dt Qf 728 1 (A1) Z Sesg; Ant; At dx
’ (3.11)

8 1
:<:(x -1 f dt f IA;,u P Z fE,-fj"]x,-"?xj dx.
0 0 i,j
First we use the assumption (3.7). Then, since the right hand side does not de-

pend on k, we go to the limit as k— + oco. By Beppo Levi’s monotone conver-
gence theorem and by (3.3) we obtain

fnz [Au|*~% | A, Du|? dx
G.12)

8 1
< P
= m(“ — 1)2 Of dt -(}[ ‘Ahul % ffiéjnx,-ﬂxj dx'

Let us recall that in the right hand side of (3.12) we have fgl_fj = ffigj(Du + th A4, Du)

and that (3.12) makes sense if the integral in the right-hand side is finite. Now let

us compute separately the gradient of |4,u |2; we obtain the estimate

2
]D([Ahu |a/2) 12 é <'02i> [Ahu[“_z lAh Duiz. (3]3)
From (3.12) and (3.13) we infer

2“2 1
[ 7 |1 D(Au P dx < ———= [ dt [|Aul|* ngif.nxinx.dx. (3.14)
9 m 1§ e i

(x — Q
Now we use the inequality
[D)|? < 2(n? |Dv|? + v? |Dy|?)  with v = |du["?.

Finally, we use Sobolev’s inequality applied to the function #v, that has com-
pact support in £2. The result that we have proved is stated in the following lemma.

Lemma 3.2. Let f be a function of class C*(R") satisfying (3.6), (3.7). Let u be
a minimizer of the integral (1.1) satisfying (3.8). There is a constant c¢ such that,
for every o = 2 for which the integral on the right hand side is finite, we have

( f(?’] ‘Ahulalz)zt dx>2/2*
? (.15)

1
=c [dt [lAwu] (an\Z + X fie(Du + th 4, Du) nx,.nx,) dx,
LJj

where 2* =2n/(n —2) if n>2, and 2% = any number greater than 1 if
n=2
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4. Proof of Theorem A

In this section we assume that f is a function of class C*(R") satisfying (1.6),
(1.7) and (1.8). We will prove that every minimizer of the integral (1.1), in the class
of functions satisfying (3.8), is locally Lipschitz-continuous in £.

Let us interchange the names of the x;-axes so that

2=zq=@p=.. =<

—. @1

Let us denote by Bg and B, balls of center x, (we do not denote explicitly
the dependence on x,) and radii respectively R, ¢ (R > ¢ > 0), compactly con-
tained in 2.

Lemma 4.1. Let us assume that (1.6), (1.7), (4.1) and (3.8) hold. Let s€{1,2,...,n}

and let us assume that the derivatives u,_ w1 Mg ygr oo U, belong to Liz(£2). Then

there exists a constant ¢, such that, if u, € L*%(Bg) for some & =2, then (we

consider the case n > 2; if n =2 we have only to replace the expression nf(n — 2)
by any real number p>1) u, € L*'*"?(B,) and

an n—z ady
e e 42
Proof. By Lemma 3.2 and assumption (1.7) we have
( f(77 | Ay [%);2:1—2 dx>£;—2
Q
=cM Ofl dt Qf [Ayu|* (2 + il quj + th Ahuqui‘z) | Dy |* dx.
i=

Let us take % such that

2
NECKBY, MZO0 n—lon B, |Dyls=g—. 4.3)

We use the assumption that u, ., ...,u, € L*(Bg). We use also Holder’s in-
equality with exponents g¢;/(g; —2) and g;/2. We get

( [ 14l "de>" 2

(I—Q—c__)i f |Apue|* (2 + Z (qu] ™|+ lux (x + hes)|)‘11‘2> dx

¢, ) 42
= R — Q)ZB£ | 4| (c3 +}§1 (Jux; )| + |1y, (x + heg) ) )dx

C4

q;—2 ogj 2
—(R (f(l‘*“ux(xﬂ-i—}ux (x+hes)\)"ldx> P < [ |4 dx)‘b
4.4)
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Since Uy, € L%(£2) and since g; < g, if j <s, we can bound the right hand side
by
o faaita)
—_— w2 dx)%.
®=or \,J 14!

The constant c¢s depends on the L%-norm of Uy but it is independent of A.
We can go to the limit as #-— 0, by using a standard argument (see for example
{71, Section 7.11, or [8], Section III-3, or [2], Proposition IX.3), and we obtain
(4.2).

Lemma 4.2. Let us assume that (1.6), (1.7), (4.1) and (3.8) hold. Let us assume
also that u, pp U g e U € Lis(2). Let R, be a fixed radius such that By CC £.

Then there is a constant cg such that

” uxs ”Lm(BRL/z) é c6 “ uxS"LqS(BRl) M (4‘5)

Proof. Let us take R, o€ (R;/2, R,] such that

1 I
R=R, ¢=Riyy, where Ry =R, (7 +.2_k) ,

keEN.
We have R — ¢ = R, — Ry.; = R; 27%*D, Let us define by induction a se-
quence «; as follows: let x, = 2 and let

2nx,

BT (46)

Fr+1

(if n =2 we replace the symbol n/(n — 2) with a real number p large enough
that (4.8) is satisfied). It is easy to see that

2n
o = 2471 where A = ———. 4.7
. =D @
Since ¢, << 2n/(n — 2), then
P “.8)
N qs(n - 2) ) )
With these notations, by (4.2) we have
RGAE N SKls
( f quxln—Z);‘ g( 1R2 )2 f ‘uxsl 2 dx. (4.9)
BRi 11 ! Ry,
Let us define
g L 2
Ay = ( S lu 2 dx)l""’ = ( [ (u, ) "dx)“k (4.10).
BRy, BRy



Regularity of Minimizers 277

By (4.6) and (4.9) we deduce

c, 45t _ s
A = 7 2k=1 - 4.

Then, by induction, we obtain

k ¢y 4i+t qs
Akﬂgn( ) =14,
Let us show that the product is bounded:
. ds 9 k1 e dit+ 1,
ke, 44\ T 2 2T ()
H R2 =e€
i=1 1
o i+1
c7 Z F
<e 1 = ¢y < + oo.

Thus A, < cz4;. Now we go to the limit as k¥ — 4 oo. Since &, -+ + oo (by
(4.7) and (4.8)), by the representation of A, in the right-hand side of (4.10) we
get

”Juxsl ”wa = HHJ( [ (u ‘2)“kdx)"‘lk}2

BRr,/2

= lim sup 4; = cgd; = ¢3 f |ty |75 dx.
k—~+ oo R, :

This implies (4.5) with ¢4 = cyq‘.

Now we are ready to complete the proof of Theorem A. In fact it is sufficient
to apply Lemma 4.2 n times by choosing s in the order s=n, n —1,...,2, 1.

5. Proof of Theorem B

In this section we assume that fis a function of class C%(R") satisfying (1.9)
and (1.10). By (1.9) there are positive constants m,, M, and ¢; such that

my &P — e, SO M1+ |EH  VEER" (5.1)

Since we assume that # is a minimizer of the integral (1.1) in the Sobolev
space HLY(Q), we have the same situation as in the preceding section, with
9=9 for every j = 1,2,..., n. Then the proof of Theorem B can ‘be obtamed
in the same way as in the proof of Theorem A.

However, in this case, it is possible to proceed more directly by mean of the
following Lemma.

Lemma 5.1. Let f be a function satisfying (1.9) and let uc HEY(Q). be a minimi-
zer of the integral (1.1). Then there is a constant ¢, such that, for B, C B CC 2
and for every « =2,

El!uxs R oI 1Dulifel - Xl 1'% (5.2)

"'"2(BQ) L (B ) s—=1 LZ»(BR)
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The proof of Lemma 5.1 is similar to the proof of Lemma 4.1; thus we do
not give the details.

Then we obtain the proof of Theorem B with the method of Lemma 4.2, by
using the assumption g << 2n/(n — 2).

6. Proof of Theorem C

In this section we assume that fis a function of class C?(R”) that satisfies (1.9)
and (1.11).
Let us first introduce some notations. For «¢€ (1, 2] let us denote by g,.(¢)

the function of the real variable ¢:
a—2

g = (- 13 % ¢ 6.1

Lemma 6.1. For every «¢(1,2] g, is a Lipschitz-continuous function that
satisfies

gx(t) <—-1—ga(t) (1 + 3" (62)

g = (x — D (L + 3022, (6.3)

The proof of Lemma 6.1 is based on computations similar to those in the
proof of Lemma 3.1, and we do not give the details.

Lemma 6.2. Let f satisfy (1.9) and let uc HL%(82) be a minimizer of the integral
(1.1). Then there is a constant c, (independent of u) such that, for B, C Br CC £
and for 1 <o <2, we have

(leul”"zdx)" . (Rilg)z( x ) f(1+1Dui)q Trody.  (6.4)

Proof. First we proceed as in Section 3 to get a result of the type stated in
Lemma 3.2. If # is taken as in (4.3), then, as in (4.4), we obtain

(Bgf }Ahu|%dx)n_;—2

¢y o \? = g
= gt (7)1 @+ 10Ul + 1wt ey . (69

Since u€ HLA(2) and « < 2, we can go to the limit as #—0 and we obtain
(6.4).

Lemma 6.3. Let f satisfy (1.9), (1.11) and let uc HLA(2) be a minimizer of
the integral (1.1). Let Ry > 0 such that By, CC 8. There are constants ¢3; > 0
and «€(1,2] such that, if RJ2=<p<<R=R,, then

g—2+«

(f|nu4qu) (Tc———(f(1+{Du|)2dx) ol 6.6)
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Proof. Let us show that there exists a real number x such that

xXn
1<a=2 g=<-—"

—_ <
——, q—2+a=2 6.7)

In fact these inequalities can be written in the form
n—2
xe 1,210 [¢" =4 - q],
and the interval in the right-hand side is not empty if and only if
n—2 n—2
1<4-9q q¢——=4-—9¢q (:q——n §2);

that is ¢ <<3 and ¢ < 2n/(n — 1), in accordance with assumption (1.11).
By (6.4), (6.7) and the fact that the function

1 1
p— (—1—-!2—“_7[ |Ulp dX)p
is increasing with respect to p, we get (6.6).

The integral (1.1) is well defined for u ¢ C‘(Q;. By (1.9) there exists a positive
constant ¢, such that

—Ce SO =c(1 + |E]) VEER" (6.8

(more precisely (5.1) holds). Thus, by continuity, the integral (1.1) is well defined
in C'(2) and in the Sobolev space HL4(Q) too. We extend it to H'?(2) “by semi-
continuity”, using the method of [11]. Precisely, for every u€ H'(), we define

F(u) = inf {1imkinf [ f(Dug) dx: up € HLAQ) N HYX Q) +u,  uw 22O u}_
2
6.9)

Let us notice that Fis an extension to H"*(2) of the integral defined on H14(2Q),
since the integral is lower semicontinuous in the weak topology (—) of H'“*().
This means that (see [11]):

F) = [ f(Duydx Vuc HA9Q). (6.10)
2
Let £ be an open set whose closure is contained in Q. Let ¢¢€ (0, 1]. Let us

define a functional F, by
F{u)=F@) +e¢ [|Dultdx YucH"(Q)NH"Q), (6.11)
&

moreover we define F,(u) = + oo if uc HY*(Q) but ug H"(Q).
Lemma 6.4. Let u be a minimizer on H"(Q) of F(u). Let u, be a minimizer of

F.(u) in the Sobolev class HY*(2) + u. Then, as & — 0, u, converges to u strongly
in H(Q).
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Proof. Let us first prove that u, converges to u in the weak topology of H'%(0Q).
By (5.1) u, is bounded in H"?£2) independently of ¢. Let u,, be a sequence that weak-

ly converges in H"*(£2) to a function u, € H"*(2). We will prove that u, = u.
By the same definition (6.9) F is lower semicontinuous in the weak topology
of H"}(0). Since u,, minimizes F, , for every v€ HYH(Q) + u we obtain

F(uo) = Ii@l&fF(uek) = I}CIP)-k]IolofFEk(uek) = k—l-lr-{-loo Fek(v)'

Now we consider v€ (Hy*(2) + u) N H"(). For such functions v we have
F,(v) > F(v) as ¢— 0. Thus we obtain

Flug) < F(v) VY ve(HyR) + u)yN HY(D). (6.12)

By the definition (6.9) of F, for every v& H'*(Q) there exists a sequence
v € (HYHQ) + w) N HiZ(Q) such that F(y,) converges to F(v) as k —> + oo.
By (6.12) we obtain

F(uo) = kEToo F(v,) = F(v).

Thus u, is a minimizer for F in H Q) + u.
By the left side of (1.9) and by Taylor’s formula we have

S0) 27 + 3 £, = &)+ 5 In — £

Let v,w€ HA(0Q). We put &= (Dv-+ Dw)/2; we put also first # = Do,
then n = Dw, and we add the two relations. We integrate on £2 and we obtain

W .
FE2) + 5 [1D0 - wP dr = 1IFQ) + Fl. (613)
0
Now if v, we H"*(Q), then we take v, w, € HL4(£2) that converge respec-
tively to v, w in the weak topology of H?(£) and satisfy

F(v,) — F(v), F(w) = F(w). (6.14)

We write (6.13) for v, and w; and we go to the limit as k — 4 co. By (6.14)
and by the weak lower semicontinuity of F and of the H'“?-norm, we obtain
(6.13) for every v, we H"*(0).
Thus the functional F is strictly convex on H§*(Q) +u and u = u,.
Now let us prove that F,(u,) converges to F(u) as ¢ — 0. Since u, is a minimizer
for F,, we have F,(u,) < F.(v), for every ve HyX Q)+ u. If ve (HFH(Q) + u)
N HY(Q) we obtain

limﬁsoup F.(u) = lii‘l‘(l) F,(v) = F(v).

By the definition of F, the above inequality holds for every v€ HIX Q) + u;
in particular it holds for v = u. Since F,(u.) = F(u)) = F(u). finally we obtain

16933 F(u) = lj_l}% F(u,) = F(u). (6.15)
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Let us use (6.13) with v =u and w = u,:

F (“ g u")‘*‘%gf |D(u — u)|? dx < } [F(u) + F(u.)]-

We go to the limit as & — 0. Since (u + u,)/2 weakly converges to u, by the lower
semicontinuity of F and by (6.15), we obtain

FG) + S-lim sup [ |D(u — w)|? dx < FG).
>0 Q

Since F(u) < + oo, as ¢ — 0, u, converges to u strongly in H*(). Lemma 6.4
is now proved.

We are ready to conclude the proof of Theorem C. The function w, is a mini-
mizer for F, on H}*(2) + u. By the definition of F,, u, is also a minimizer of F,
on H“?(0"), when the integral if restricted to £2’. The integrand f,, defined by

1) = (&) + e [&]7,

is a function of class C*(B”") satisfying (1.9), (1.11) with constants m and M’ =
M’(q) independent of £€(0,1]. By Lemma 6.3, if Br CC £2°, we have

g—2+4a

= cs
Due"dx)q g—( 1 + |Du, 2dx) 2
(o 1Pt n) = g2 g f o 19w
Now we go to the limit as ¢ — 0. By Lemma 6.4 u, converges to u in the norm
of H"}(). Thus the right-hand side is continuous with respect to u,, while the left-
hand side is lower semicontinuous. As ¢— 0 we obtain the inequality stated in
Theorem C.

7. Some other results

First let us briefly recall how to use the H'*®-regularity of the minimizers to
get higher regularity.

Theorem D. Let the assumptions (1.6), (1.7) and (1.8) of Theorem A or the
assumptions (1.9) and (1.11) of Theorem C be satisfied. If the derivatives of f are
Holder continuous with exponent «¢€ (0,1) up to the order k =2, then every
minimizer u of the integral (1.1) is of class CEX(Q). In particular, if f€ C*(R")
then uc C*(2).

Sketch of proof. By either Theorem A or Theorem C, u€ Hi3(£2). Since
fe CHRM, for every 2 CC 2 there is a constant ¢, such that
m A2 = Y fog, (Dulx)) hidy = ¢4 |42 VieRr,
ij

for almost every x ¢ £’. Now the proof is standard, for example as in Section 6
of Chapter 4 of LADYZHENSKAYA & URAL'TSEVA [9] (see also Section 1.11 by Mor-
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REY [13] and Section 8 of Chapter V by GiusTi [8]): First, by using the difference
quotient as in Section 3, for every s€{l,2,...,n} we obtain

Qj 2 a0 () g dx =0V g€ Co(@2),
where ’
ay(x) = fiyg, (Du(x)).

Thus the partial derivative u, is a weak solution of a second order linear elliptic
equation with bounded coefficients in £2°. By the DE GIORGI-NASH theorem [3]
u,_is Holder continuous in £’. Thus the coefficients a;(x) are Holder continuous.
This implies (see, for example, GIAQUINTA [4], Theorem 3.2 of Chapter 3) that
u, € Cigd(R2") for some fe(0,1). Then ay(x)e Ci(2); finally it follows that
uc CEX(LQ). The proof is complete if k = 2. Higher regularity can be obtained
by induction.

Let us show that integrals of the type considered in this paper may have dis-
continuous minimizers if the exponent g is large in dependence of n. The example
that we propose can be found in [5] and {12].

Let n> 3 and let us consider the integral

n—1
f{% > u§i+—l— u, |7} dx, (1.1)
o i=1 q "
where x=(x;), i=1,2,...,n, and
n— 1
q> 2n_ 3 (7.2)

Let 2 C{x¢R":x,> 0}. Then a minimizer of the integral (7.1) is given by

el A
U1y gy ey 1) — (cxz/ Y x?)q—z (13)
i=1

(n—l 2 ) (q—z)q‘l
¢ = — . .
g—1 qg—2 q

The constant ¢ is positive and the function u is unbounded near the line
Xy ==X = ... = X,_; = 0. The discontinuity on a line is not an accident; in
fact a minimizer cannot have discontinuities in the interior of a ball, for example
at a single point.

We can modify the previous example by a little considering (1.1) on a bounded
set R C{x€R":x,> ¢,}, with ¢, > 0, and with f satisfying

where

n—1
& =13 Zl &+ gy,
iz
where, for some positive constants ¢; and c,,

1
GECTM), g"Z s =1t il [t 2o
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This integrand satisfies all the assumptions of Theorems A, B, C if ¢g(= 2) is
small. Thus, if ¢ is small, every minimizer is of class C*(£2); while, if (7.2) holds,
then the function u given by (7.3) is a discontinuous minimizer in the Sobolev class
of functions such that

uxiELz(.Q) Vi=1,2,....,n—1 uanL"(.Q).

Finally we wish to emphasize the importance in Theorem C of the extension
of the integral (1.1) from H9(Q) to H"*(Q). From a classical point of view the in-
tegral (1.1) is well defined for every u€ C!(£2) (the integral is well defined also if

ug C'(9), since the integrand is bounded from below). Under the assumption
(1.9) the integral can be extended by continuity to H'%(£2) and, by semicontinuity,
to H"?(£2). Somebody could disagree with this kind of extension (and really some-
body who disagrees still exists); in any case here we present a consequence of
Theorem C that is independent of the definition of the integral outside of C'(£)
(but that has been proved by using a right extension).

Theorem E. Let f be a function of class C**(R”) satisfying (1.9) and (1.11). Let
Uy € HY(2). Then there is a unique solution of the problem

min{ [ f(Duydx:uc CHR), u— up€ H},’Z(Q)}.

Moreover the minimizer belongs to CX(Q).

Proof. The functional F defined in (6.9) has a unique minimizer in the Sobolev
class H'*(2) -+ u,. By Theorems C and D the minimizer is of class CZ3(2).

The result follows from the fact that the functional F is an extension of the integral
(1.1), and thus it is equal to the integral for every u¢€ C*(0).
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