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Abstract

We consider the evolution problem associated with a convex integrand f : R
Nn

→ [0,∞) satisfying a non-standard p, q-growth assumption. To establish the ex-
istence of solutions we introduce the concept of variational solutions. In contrast
to weak solutions, that is, mappings u : �T → R

n which solve

∂t u − div D f (Du) = 0

weakly in �T , variational solutions exist under a much weaker assumption on
the gap q − p. Here, we prove the existence of variational solutions provided the
integrand f is strictly convex and

2n
n+2 < p � q < p + 1.

These variational solutions turn out to be unique under certain mild additional as-
sumptions on the data. Moreover, if the gap satisfies the natural stronger assumption

2 � p � q < p + min
{
1, 4

n

}
,

we show that variational solutions are actually weak solutions. This means that
solutions u admit the necessary higher integrability of the spatial derivative Du to
satisfy the parabolic system in the weak sense, that is, we prove that

u ∈ Lq
loc

(
0, T ; W 1,q

loc (�,R
N )
)
.

1. Introduction

In this paper we are interested in the existence and regularity of solutions of
parabolic systems with p, q-growth of the type

∂t u − div D f (Du) = 0 in �T . (1.1)
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In the following, � denotes a bounded domain in R
n with n � 2. For T > 0 we

denote by �T := � × (0, T ) the space-time cylinder over �. Points in R
n+1 are

termed z = (x, t). Differentiation with respect to the spatial variable x or xi will be
denoted by Du, respectively ∂xi u or uxi , while ∂t u or ut stands for the differentiation
with respect to time. By assuming a variational structure for the diffusion term, that
is, by writing div D f (Du) for some given integrand f : R

Nn → [0,∞) instead of
div a(Du) with a general vector-field a : R

Nn → R
Nn , we emphasize that we are

interested in variational solutions. Throughout the paper the convex integrand f
is assumed to be differentiable and to satisfy a non-standard growth and ellipticity
condition; see (2.3) respectively (2.9) below.

Model equations and systems that we consider in this context are, for instance,
for some exponents p, q with 2n

n+2 < p � q, parabolic equations of the type

∂t u − div
( |Du|p−2 Du

)− ∂xn

(|uxn |q−2uxn

) = 0 in �T .

Here, the integrand is given by the convex function f (ξ) = 1
p |ξ |p + 1

q |ξn|q .
Otherwise we could consider convex functions f such as

f (ξ) = |ξ |p log (1 + |ξ |) ,
for some p > 2n

n+2 . In this case the convex function f satisfies, for every ε > 0, the
growth condition |ξ |p � f (ξ) � Lε (1+|ξ |)p+ε. We could also consider functions
f (ξ) which do not behave like a power when |ξ | → +∞. For instance, for |ξ |
large, the integrand could be of the type

f (ξ) = |ξ |a+b sin(log log |ξ |) .

A computation shows that such an intergrand f (ξ) is a convex function for |ξ | � e
(and therefore it can be extended to all ξ ∈ R

n as a convex function on R
n) if a, b

are positive real numbers such that a > 1 + b
√

2. In this case our integrand f
satisfies the bounds

|ξ |p � f (ξ) � L (1 + |ξ |)q ,
with p = a − b and q = a + b. Of course the associated parabolic differential
equation, again, has the form in (1.1) with f from above.

The stationary problem corresponding to (1.1) has been studied extensively in
the past. Two papers [22,23] of the third author have been the starting point. In
these papers one possible approach was demonstrated to attack problems with a
non-standard p, q-growth condition. The idea behind this approach is to assume
initially that minimizers, respectively weak solutions to the Euler–Lagrange equa-
tion (or more generally of weak solutions to an elliptic equation of the form
div a(x, Du) = 0 in �) admit a gradient in the smaller energy space determined
by the growth condition from above, that is, that Du ∈ Lq

loc. We call such solutions
weak (energy) solutions. The assumption Du ∈ Lq

loc allows the application of a
Moser iteration scheme in order to obtain local bounds for ‖Du‖L∞ in terms of
the Lq -norm of Du. This is possible, provided the gap q − p is not too large.
In a second step (via an interpolation argument) the Lipschitz-bound is improved
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in such a way that the Lq -norm on the right-hand side is replaced by the L p-
norm of Du. In this step the assumption concerning the gap q − p has to be
sharpened. These a priori estimates are then used to construct weak solutions to
problems with non-standard p, q-growth conditions. This is achieved by consid-
ering regularized problems, that is, by adding the vector-field ε|ξ |q−2ξ to a(x, ξ)
respectively D f (ξ). The associated Dirichlet-problem admits a solution uε ∈ Lq ,
and therefore fulfills the a proiri estimate. It is feasible that the solutions uε of the
regularized problems sub-converge to a W 1,∞

loc - solution of the original p, q-growth
problem. For more details we refer to [10,11,22–26]. For parabolic equations of
the form ∂t u − div a(x, Du) = 0 in a space time cylinder �T this approach ex-
hibits a natural analogue; via so called weak energy solutions, that is, functions
u ∈ Lq

loc−W 1,q
loc ∩ C0−L2, it is possible to have all terms defined in the weak

formulation. Then, the Moser iteration scheme yields a sup-estimate for the spatial
gradient in terms of the local Lq -norm on parabolic cylinders, and further—again
by an interpolation argument—by the local L p-norms. For this, of course, one
has to assume a certain smallness assumption for the gap q − p. Having the a
priori estimates for weak energy solutions available, again a regularization pro-
cedure by considering solutions uε of the regularized parabolic equation ∂tv −
div(ε|Dv|q−2 Dv + a(x, Du)) = 0 leads to a solution u of the original parabolic
p, q-growth problem, which satisfies a sup-estimate for the spatial gradient exactly
as the approximating functions. This approach was successfully carried out in [5];
see also [18] for gradient estimates for bounded solutions to certain anisotropic
parabolic equations.

In the elliptic framework, a second approach was introduced in [15]. This ap-
proach has its origin in general existence results for variational functionals of the
form

F(u) :=
∫

�

f (Du) dx

for a convex integrand f : R
Nn → [0,∞) satisfying a non-standard p, q-growth

condition as in (2.9), for example. Existence of minimizers can be shown by the
Direct Method of the Calculus of Variations, assuming very mild assumptions on
the integrand. The minimizing property has to be understood in the sense that
u ∈ W 1,1 minimizes the variational integral F if and only if F(u) < ∞ and
F(u) � F(v) for any v ∈ W 1,1 with u − v ∈ W 1,1

0 . Of course minimizers admit
a gradient in L p by the coercivity of the integrand. The main concern is then to
establish that minimizers, in fact, admit a gradient in Lq

loc. This is achieved by
testing the Euler–Lagrange system with finite differences of u, which leads to a
certain kind of fractional differentiability of Du. (Note that at this stage it is not at
all clear that minimizers fulfill the Euler–Lagrange system and therefore one has
to perform an approximation procedure.) Then, by fractional Sobolev embeddings,
this yields higher integrability of Du, and this in turn can be used to improve the
fractional differentiability of Du. By a finite iteration this leads to the desired higher
integrability of Du. As mentioned before, this procedure has to be combined with an
approximation scheme by considering ε|ξ |q + f (ξ) instead of f (ξ). Minimizers
of the regularized functionals are of class W 1,q and satisfy the Euler–Lagrange
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system. Therefore, the above scheme is applicable to these minimizers, and when
ε ↓ 0 they sub-converge to a minimizer of the functional F . If the integrand is
strictly convex, uniqueness is known and yields that the original minimizer also
satisfies the local Lq -estimate for the gradient. The higher integrability, however,
can only be derived if the gap q − p is small enough. For more details with respect
to this approach we refer to [8,15,19,29,30]. Moreover, for existence of solutions
of a variational inequality with p(x, t)-growth, we refer to [27] and for the self-
improving property of the integrability (that is, the higher integrability) of the
spatial gradient of solutions of parabolic systems with p(x, t)-growth, to [1,4,
33].

The aim of the present paper is also to develop a variational approach in the
parabolic setting in the spirit of a paper by Lichnevsky and Temam [17], in which
the concept of variational solutions to the evolutionary minimal surface equa-
tion has been developed. The advantage of variational solutions stems from the
fact that existence can be established under very mild assumptions on the con-
vex integrand. However, in the evolutionary case the proof of existence of vari-
ational solutions is not immediate, since we cannot apply the Direct Method of
the Calculus of Variations; in particular, we cannot use a minimizing sequence.
After having established the existence of variational solutions, the second step
is to show that these variational solutions are, in fact, weak energy solutions of
the associated parabolic system if the gap q − p is sufficiently small. Thus, the
main effort is to prove the higher integrability property Du ∈ Lq

loc of the spatial
gradient.

2. Results

As we explained in the introduction, in the case of stationary variational inte-
grals with a non-standard p, q-growth condition, minimizers are already defined
in the Sobolev space W 1,p. Therefore, the variational approach yields minimiz-
ers which may not satisfy the Euler–Lagrange system. Under suitable smallness
assumptions on the gap q − p, however, it is possible to show that minimizers
belong to W 1,q

loc , which guarantees that minimizers also solve the Euler–Lagrange
system. The parabolic analogue of this elliptic variational approach is, to our knowl-
edge, not yet established. However, it would be a natural approach, since such an
approach would lead to parabolic minimizers or variational solutions in the space
L p−W 1,p. Such variational solutions might not solve the parabolic system asso-
ciated with the variational integral, since a priori the Lq

loc-regularity for the spatial
gradient Du, needed for the derivation of the parabolic Euler–Lagrange system,
might fail to hold. For these reasons it would be convenient and natural to ask, in the
parabolic setting, for such a weaker notion of solutions, not requiring Du ∈ Lq

loc.
To build up a setting in which the existence of variational solutions can be estab-
lished will be the main subject of the first part of the paper. The second part is then
devoted to showing—imposing a stronger hypothesis for the gap q − p—that vari-
ational solutions are, in fact, higher integrable and thus solve the Euler–Lagrange
system.
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2.1. Existence and Uniqueness of Variational Solutions

Here our aim is to establish an existence and uniqueness result for parabolic
Cauchy–Dirichlet problems admitting a variational structure of the type

{
∂t u − div D f (Du) = 0 in �T ,

u = g on ∂P�T ,
(2.1)

where u : �T ⊂ R
n+1 → R

N with n � 2 and N � 1, can be a vector valued
function with values in Euclidean N -space R

N and where ∂P�T := [∂�×(0, T )]∪
[�× {0}] denotes the parabolic boundary of �T . We assume that f : R

Nn → R+
is an integrand of class C1 and that there exist two growth exponents p, q with

2n
n+2 < p < q < p + 1, (2.2)

such that f and D f fulfill the following growth and monotonicity conditions:
{

0 � f (ξ) � L (1 + |ξ |)q ,
〈D f (ξ)− D f (η), ξ − η〉 � ν

(
μ2 + |ξ |2 + |η|2) p−2

2 |ξ − η|2, (2.3)

whenever ξ, η ∈ R
Nn and for some 0 < ν � 1 � L and μ ∈ [0, 1]. Note that

the lower bound on p, that is, p > 2n
n+2 , is a typical assumption in the regularity

theory for non-linear parabolic equations and systems, see [12, Chapter V, Sections
3 and 5]. At this point it is worth mentioning that assumption (2.3)2 implies the strict
convexity of the integrand f . In turn, the convexity of f and the growth assumption
(2.3)1 on f imply the following growth property of D f :

|D f (ξ)| � c(q)L (1 + |ξ |)q−1,

whenever ξ ∈ R
Nn , cf. [22, Lemma 2.1]. For the boundary data g we suppose that

the following regularity assumptions hold true:
{

g ∈ L p′(q−1)
(
0, T ; W 1,p′(q−1)(�,RN )

) ∩ C0
([0, T ]; L2(�,RN )

)
with

gt ∈ L p′(
0, T ; W −1,p′

(�,RN )
)
,

(2.4)

where, as usual, p′ := p
p−1 denotes the Hölder conjugate of p. We note that

p′(q − 1) > q. In the following—despite a slight abuse of notation—by u ∈
L p(0, T ; W 1,p

g (�, R
N )) we mean that u − g ∈ L p(0, T ; W 1,p

0 (�, R
N )).

To give the precise definition of a variational solution we need to introduce a
weaker notion of continuity with respect to time than the usual one, which is used in
the definition of weak solutions for standard p-growth problems. These solutions
are continuous in time as mappings from [0, T ] to L2(�,RN ). Here, we need the
following weaker type of continuity with respect to time.

Definition 2.1. Let X be a Banach space. A function u ∈ L∞(0, T ; X) belongs to
the function space Cw([0, T ]; X) of weakly continuous functions from [0, T ] to X
if u(·, t) ∈ X for any t ∈ [0, T ] and

t �→ 〈ψ, u(t)〉X is continuous for any ψ ∈ X ′.

Here, 〈·, ·〉X denotes the duality pairing between X ′ and X .
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In the following definition we introduce the concept of a variational solution
to the Cauchy–Dirichlet problem (2.1). Here we follow an idea by Lichnewsky
and Temam [17], which has been used for the evolution problem for parametric
minimal surfaces.

Definition 2.2. Suppose that f : R
Nn → R+ is an integrand of class C1 satisfying

the growth and monotonicity assumptions from (2.3). Furthermore, assume that the
Cauchy–Dirichlet datum g fulfills (2.4). We identify a map

u ∈ L p(0, T ; W 1,p
g (�,RN )

) ∩ Cw
([0, T ]; L2(�,RN )

)

as a variational solution of the Cauchy–Dirichlet problem (2.1) if and only if
u(·, 0) = g(·, 0) and, further, the variational inequality

∫ τ

0
〈vt , v − u〉W 1,p(�,RN ) dt +

∫

�τ

[ f (Dv)− f (Du)] dz

� 1
2‖(v − u)(·, τ )‖2

L2(�)
− 1

2‖(v − g)(·, 0)‖2
L2(�)

(2.5)

holds true, whenever v ∈ L p(0, T ; W 1,p
g (�,RN )) with vt ∈ L p′

(0, T ; W −1,p′

(�,RN )) and τ ∈ (0, T ]. ��
It is worthwhile to note that a variational solution belonging to the parabolic

space Lq
loc(0, T ; W 1,q

loc (�,R
N )) is, in fact, a weak solution. Hence, the concept of

variational solutions coincides with the classical one of a weak solution once the
natural higher integrability is established; see Theorem 2.8. We should also mention
that the testing functions v ∈ L p(0, T ; W 1,p

g (�,RN ))with vt ∈ L p′
(0, T ; W −1,p′

(�,RN )) in Definition 2.2 are of class C0([0, T ]; L2(�,RN )); this is a conse-
quence of the embedding from [31, Chapter III, Proposition 1.2]. In this framework
we can prove the existence of variational solutions. This is the content of

Theorem 2.3. Suppose that f : R
Nn → R+ is an integrand of class C1 satisfying

(2.2) and (2.3) and that the Cauchy–Dirichlet datum g fulfills (2.4). Then, there
exists a variational solution

u ∈ L p(0, T ; W 1,p
g (�,RN )

) ∩ Cw
([0, T ]; L2(�,RN )

)

of the parabolic system (2.1) with u(·, 0) = g(·, 0).

In contrast to the elliptic setting, uniqueness of evolutionary variational solu-
tions is not completely obvious. The reason for this is the presence of the time
derivative in the variational inequality (2.5) and the fact that the variational solu-
tion u does not necessarily admit a time derivative ut in the appropriate parabolic
space L p′

(0, T ; W −1,p′
(�,RN )). This prevents us from testing the variational

inequality with the variational solution u itself. Nevertheless, if we assume that the
Cauchy–Dirichlet datum admits a slightly stronger regularity condition (2.6) (note
that p/(p + 1 − q) > p′(q − 1) > q), we obtain the following uniqueness result
for variational solutions. The precise result is the following one.
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Theorem 2.4. Suppose that f : R
Nn → R+ is of class C1 satisfying (2.2) and (2.3)

and that g satisfies
{

g ∈ L
p

p+1−q
(
0, T ; W 1, p

p+1−q (�,RN )
) ∩ C0

([0, T ]; L2(�,RN )
)
,

gt ∈ L p′(
0, T ; W −1,p′

(�,RN )
)
.

(2.6)

Then, there exists a unique variational solution

u ∈ L p(0, T ; W 1,p
g (�,RN )

) ∩ Cw
([0, T ]; L2(�,RN )

)

of the parabolic system (2.1) with u(·, 0) = g(·, 0).

2.2. Existence of Weak Solutions

In this chapter we restrict our considerations to the case of integrands f obeying
a p-growth condition from below with p � 2. We believe that results similar to the
ones stated below also hold true for singular case 2n

n+2 < p < 2. However, since
the proofs are quite technical we will focus our attention on the degenerate case
p � 2 only. We consider parabolic Cauchy–Dirichlet problems of the type

{
∂t u − div D f (Du) = 0 in �T ,

u = g on ∂P�T ,
(2.7)

where f : R
Nn → R+ is a C2-integrand on R

Nn . Further, we assume that for given
fixed growth exponents p, q with

2 � p < q and q − p < min
{
1 , 4

n

}
, (2.8)

the integrand f fulfills the following p, q-growth and ellipticity conditions:
⎧
⎨

⎩

|ξ |p � f (ξ) � L (1 + |ξ |)q ,
|D2 f (ξ)| � L (1 + |ξ |)q−2 ,

〈D2 f (ξ)η, η〉 � ν |ξ |p−2|η|2 ,
(2.9)

whenever ξ, η ∈ R
Nn . In this chapter we can use a stronger notion of solu-

tion; these solutions could be termed weak energy solutions, since they obey the
integrability property u ∈ Lq

loc(0, T ; W 1,q
loc (�,R

N )), which makes the integral∫
�T

〈D f (Du), Dϕ〉 dz well defined in the weak formulation. This notion of solu-
tion has already been used by the authors [5] in the case of parabolic equations with
p, q-growth.

Definition 2.5. A map

u ∈ L p(0, T ; W 1,p
g (�,RN )

)∩ Lq
loc

(
0, T ; W 1,q

loc (�,R
N )
)∩ Cw

([0, T ];L2(�,RN )
)
,

with u(·, 0) = g(·, 0), is termed a weak solution of the parabolic system (2.7) if
and only if

∫

�T

u · ϕt − 〈D f (Du), Dϕ〉 dz = 0

holds true whenever ϕ ∈ C∞
0 (�T ,R

N ). ��
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For weak solutions, that is, solutions in the sense of Definition 2.5, we have the
following existence result.

Theorem 2.6. Suppose that the integrand f : R
Nn → R+ is of class C2 satisfying

(2.8) and (2.9) and, further, that g is as in (2.4). Then, there exists a weak solution

u ∈ L p(0, T ; W 1,p
g (�,RN )

)∩Lq
loc

(
0, T ; W 1,q

loc (�,R
N )
)∩ Cw

([0, T ];L2(�,RN )
)
,

with u(·, 0) = g(·, 0) of the parabolic system (2.7). Further, for any cylinder
Q R(zo) � �T the quantitative estimate

∫

Q R/2(zo)

|Du|q dz

� c

[
sup

t∈(to−R2,to)

∫

BR(xo)

|u(·, t)|2 dx +
∫

Q R(zo)

(|Du|p + |u|p + 1
)

dz

]χ

(2.10)

holds true for a constant c = c(n, ν, L , p, q, R) and an exponent χ = χ(n, q −
p) > 1.

Remark 2.7. Here, we make some comments on the appearing exponents. Firstly,
the upper bound on q in (2.8)—that is, q < p+ 4

n —is exactly the one leading to the
L∞ bound for the gradient Du in the case of one single equation, see [5, Theorem
1.2]. Moreover, the exponent p + 4

n is exactly the gain of integrability one gets in
parabolic standard p-growth problems by the use of second spatial derivatives and
the Sobolev embedding, see [14, Lemma 5.4]. On the other hand, comparing the
elliptic bound in [23, Theorem 2.1], that is,

q <
np

n − 2
≡ p + 2p

n − 2
,

with the parabolic bound

2 � p � q < p + 4

n
≡ p + 2p

(n + 2)− 2
· 2

p
,

one must replace n by n +2 (which is due to the different scaling in time) and must
take into account that the parabolic deficit 2

p shows up. In this respect, the parabolic
restriction coincides with the elliptic one. ��

2.3. Regularity of Variational Solutions

It is not difficult to show that any weak solution is also a variational solution (see
Section 4.4). On the other hand, under the weak assumptions of Theorems 2.3 and
2.4 it cannot be expected, in general, that variational solutions obey the necessary
integrability properties to be weak solutions in the sense of Definition 2.5. Indeed,
this would require that the spatial gradient Du belongs to Lq

loc, which is, in general,
not true; already in the elliptic setting this might be false, see Section 6 in [23].
To obtain the necessary higher integrability for variational solutions, we need to
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assume stronger regularity for the integrand as in (2.9) and we need to reduce the
gap between p and q as in (2.8). Under these further assumptions we obtain the
following regularity result for variational solutions.

Theorem 2.8. Suppose that f : R
Nn → [0,∞) is of class C2 satisfying (2.8) and

(2.9) and that g satisfies (2.6). Then, any variational solution

u ∈ L p(0, T ; W 1,p
g (�,RN )

) ∩ Cw
([0, T ]; L2(�,RN )

)
,

with u(·, 0) = g(·, 0) of the parabolic system (2.1), is also a weak solution in the
sense of Definition 2.5. In particular, we have

Du ∈ Lq
loc(�T ,R

Nn)

and the quantitative estimate (2.10) holds true.

3. Preliminaries and Notations

3.1. Notations

The spaces L p(�,RN ), W 1,p(�,RN ) and W 1,p
0 (�,RN ) denote the usual

Lebesgue and Sobolev spaces. For fixed g ∈ L p(0, T ; W 1,p(�, R
N )) we de-

note by L p(0, T ; W 1,p
g (�, R

N )) the affine space g + L p(0, T ; W 1,p
0 (�, R

N )).
Throughout the paper we use as parabolic cylinders the one-sided parabolic cylin-
ders of the form

Q�(zo) := B�(xo)× (to − �2, to).

Here, B�(xo) denotes the open ball of radius � > 0 with center xo ∈ R
n . Points in

space-time R
n+1 are denoted by z = (x, t). The parabolic distance of two points

z1 = (x1, t1), z2 = (x2, t2) ∈ R
n+1 is given by

dP (z1, z2) := max
{|x1 − x2|,

√|t1 − t2|
}
.

3.2. Preliminaries

In order to “reabsorb” certain terms, we will use the following iteration lemma,
which is a standard tool and can be found, for instance, in [16].

Lemma 3.1. Let 0 < ϑ < 1, A, B � 0 and α > 0. Then there exists a constant
c ≡ c(α, ϑ) such that there holds: For any 0 < r < � and any non-negative,
bounded function φ : [r, �] → [0,∞) satisfying

φ(s) � ϑφ(t)+ A(t − s)−α + B for all 0 < r � s < t � �,

we have

φ(r) � c
[
A(� − r)−α + B

]
.

The next Lemma can be retrieved from [9, Lemma 2.2].
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Lemma 3.2. Let p > 1 and k ∈ N. Then there exists a constant c ≡ c(p) such that
for any μ � 0 and A, B ∈ R

k there holds

(
μ2 + |A|2) p

2 � c
(
μ2 + |B|2) p

2 + c
(
μ2 + |A|2 + |B|2) p−2

2 |B − A|2.
The following algebraic fact can be retrieved from [2] in the case σ < 0. The

case σ > 0 can be obtained in a similar way.

Lemma 3.3. Let k ∈ N. For every σ ∈ (−1/2,∞) there exists a constant c =
c(σ ) � 1 such that the following estimate holds true:

c−1(μ2 + |A|2 + |B|2)σ �
∫ 1

0

(
μ2 + |A + s(B − A)|2)σ ds

� c
(
μ2 + |A|2 + |B|2)σ

for any μ � 0 and A, B ∈ R
k , not both zero if μ = 0 and σ < 0.

As a consequence of Lemma 3.3 one can show

Lemma 3.4. Let k ∈ N and p > 1. Then there exists a constant c ≡ c(p) � 1 such
that for any A, B ∈ R

k there holds

〈|A|p−2 A − |B|p−2 B, A − B
〉
� c−1(|A|2 + |B|2) p−2

2 |A − B|2.

4. Existence of Variational Solutions

The proof of the existence of variational solutions is divided into several steps.
We start with a standard regularization procedure.

4.1. Regularization

For ε ∈ (0, 1] we define the regularized integrand fε by

fε(ξ) := f (ξ)+ ε|ξ |q for ξ ∈ R
Nn .

From the properties (2.3) of the integrand f and Lemmas 3.3 and 3.4 we deduce
the following growth and ellipticity properties of fε:

⎧
⎪⎪⎨

⎪⎪⎩

〈D fε(ξ)− D fε(η), ξ − η〉 � ε
c(q)

(|ξ |2 + |η|2) q−2
2 |ξ − η|2

+ ν
(
μ2 + |ξ |2 + |η|2) p−2

2 |ξ − η|2,
|D fε(ξ)| � (L + c(q)) (|ξ | + 1)q−1,

(4.1)

whenever ξ, η ∈ R
Nn . This ensures that D fε fulfills a standard q-growth and

monotonicity condition and therefore allows us to construct weak energy solutions
to the associated Cauchy–Dirichlet problem with a datum g as in (2.4). In the
following, by

uε ∈ Lq(0, T ; W 1,q(�,RN )
) ∩ C0([0, T ]; L2(�,RN )

)



Parabolic Systems with p, q-Growth 229

we denote the unique solution to the Cauchy–Dirichlet problem
{
∂t uε − div

(
D fε(Duε)

) = 0 in �T ,

uε = g on ∂P�T .
(4.2)

The existence of such weak solutions uε can be deduced from the classical theory,
see [20]. Note, also, that we have

∂t uε ∈ Lq ′(
0, T ; W −1,q ′

(�,RN )
)
. (4.3)

4.2. Energy Bound

We test the weak formulation of the parabolic system (4.2)1 with the testing-
function ϕ(x, t) = (uε − g)(x, t)χθ (t), where χθ ∈ W 1,∞(R) satisfies χθ (t) = 1
for −∞ < t < τ − θ for some τ ∈ (0, T ) and θ ∈ (0, τ ), χθ (t) = 0 for t > τ

and χθ (t) = 1
θ
(τ − t) for τ − θ � t � τ . We note that the following computations

are formal concerning the use of the time derivative ∂t uε. However, they can be
made rigorous by the use of a mollification procedure as, for instance, by Steklov
averages with respect to time. With this choice of ϕ the weak form of (4.2)1 yields,
for almost every τ ∈ (0, T ), in the limit θ ↓ 0 that

1
2

∫

�

|uε − g|2(·, τ ) dx +
∫

�τ

〈
D fε(Duε)− D fε(Dg), Duε − Dg

〉
dz

= −
∫

�τ

〈D fε(Dg), Duε − Dg〉 dz −
∫ τ

0
〈uε − g, gt 〉W 1,p(�,RN ) dt

=: I1 − I2, (4.4)

where we have abbreviated �τ := � × (0, τ ). The first term I1 is estimated with
the bound (4.1)2 and Young’s inequality as follows:

| I1 | � (L + c(q))
∫

�τ

(|Dg| + 1)q−1|Duε − Dg| dz

�
∫

�τ

[
δ

2p−1 |Duε − Dg|p dz + c (|Dg| + 1)p′(q−1)
]

dz

� δ

∫

�τ

|Duε|p dz + c
∫

�to

(|Dg|p′(q−1) + 1
)

dz,

for a constant c ≡ c(p, q, 1/δ). For the second term, I2, a slice-wise application
of Poincaré’s inequality to (uε − g)(·, t) for almost every t ∈ (0, τ ) and Young’s
inequality imply that

| I2 | �
(∫

�τ

|Duε − Dg|p + |uε − g|p dz

) 1
p ‖gt‖L p′

(0,τ ;W−1,p′
(�,RN ))

� c

(∫

�τ

|Duε − Dg|p dz

) 1
p ‖gt‖L p′

(0,τ ;W−1,p′
(�,RN ))

� δ

∫

�τ

(|Duε|p + |Dg|p) dz + c ‖gt‖p′
L p′

(0,τ ;W−1,p′
(�,RN ))
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holds true, where c ≡ c(p, 1/δ, diam(�)). Finally, by (4.1)1 and Lemma 3.2, we
obtain for the second term on the left-hand side of (4.4) the following bound from
below:

∫

�τ

〈
D fε(Duε)− D fε(Dg), Duε − Dg

〉
dz

� ν

∫

�τ

(
μ2 + |Duε|2 + |Dg|2) p−2

2 |Duε − Dg|2 dz

� ν
c(p)

∫

�τ

|Duε|p dz − ν

∫

�τ

(
μ2 + |Dg|) p

2 dz.

Inserting the preceding estimates into (4.4) and choosing δ small enough to reabsorb∫
�τ

|Duε|p dz into the left-hand side, we find that

∫

�

|uε(·, τ )|2 dx +
∫

�τ

|Duε|p dz � c(ν, L , p, q, diam(�))M

holds true for almost every τ ∈ (0, T ). Here, we have abbreviated

M :=
∫

�T

(|Dg|p′(q−1)+1
)

dz+‖g‖2
L∞(0,T ;L2(�,RN ))

+‖gt‖p′
L p′

(0,T ;W−1,p′
(�,R‘N ))

.

Taking the supremum over τ ∈ (0, T ) in the first term on the left-hand side and
letting τ ↑ T in the second one, we end up with the following energy estimate:

sup
t∈(0,T )

∫

�

|uε(·, t)|2 dx +
∫

�T

|Duε|p dz � c(ν, L , p, q, diam(�))M. (4.5)

Moreover, applying Poincaré’s inequality slice-wise to (uε − g)(·, t) for almost
every t ∈ (0, T ), we also obtain a bound for the L p-norm of uε, that is, we have
the inequality:

∫

�T

|uε|p dz � 2p−1
∫

�T

(|uε − g|p + |g|p) dz

� c
∫

�T

(|Duε − Dg|p + |g|p) dz

� c(ν, L , p, q, diam(�))

[
M +

∫

�T

|g|p dz

]
. (4.6)

4.3. Weak Continuity in Time

We fix 0 < t1 < t2 < T and choose a testing function ϕ ∈ C∞
0 (�× (t1, t2)) in

the weak form of (4.2)1. Subsequently, using the bound (4.1)2, Hölder’s inequality
(note that q < p + 1) and the energy bound (4.5), we obtain
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∣
∣
∣
∣

∫

�×(t1,t2)
uε∂tϕ dz

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

�×(t1,t2)
〈D fε(Duε), Dϕ〉 dz

∣
∣
∣
∣

� (L + c(q))
∫

�×(t1,t2)
(1 + |Duε|)q−1|Dϕ| dz

� (L + c(q)) | spt ϕ| p+1−q
p

(∫

�T

(1 + |Duε|)p dz

) q−1
p ‖Dϕ‖L∞(�×(t1,t2))

� c | spt ϕ| p+1−q
p ‖Dϕ‖L∞(�×(t1,t2)), (4.7)

where c = c(n, ν, L , p, q, diam(�),M). Now, for t1 < s1 < s2 < t2 and δ > 0
small enough we define

χδ(t) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, for t1 � t � s1 − δ,
1
δ
(t − s1 + δ), fors1 − δ � t � s1,

1, for s1 � t � s2,

− 1
δ
(t − s2 − δ), for s2 � t � s2 + δ,

0, for s2 + δ � t � t2.

We choose in (4.7) a testing function of the form ϕ(x, t) := χδ(t)ψ(x) with ψ ∈
C∞

0 (�,R
N ). Note that this choice is possible by an approximation argument. We

find
∣
∣
∣
∣

∫

�

1

δ

(∫ s1

s1−δ
uε(x, t) dt −

∫ s2+δ

s2

uε(x, t) dt

)
ψ(x) dx

∣
∣
∣
∣

� c (s2 − s1 + 2δ)
p+1−q

p ‖Dψ‖L∞(�).

In the preceding inequality we pass to the limit δ ↓ 0 and obtain for almost every
t1 < s1 < s2 < t2 that

∣
∣
∣
∣

∫

�

(
uε(x, s1)− uε(x, s2)

)
ψ(x) dx

∣
∣
∣
∣ � c (s2 − s1)

p+1−q
p ‖Dψ‖L∞(�)

holds true, whenever ψ ∈ C∞
0 (�,R

N ). Now, with � ∈ N such that � > n+2
2 the

Sobolev inequality yields

‖Dψ‖L∞(�) � c(n, �,�) ‖ψ‖W �,2(�),

and hence
∣
∣
∣
∣

∫

�

(
uε(x, s1)− uε(x, s2)

)
ψ(x) dx

∣
∣
∣
∣ � c (s2 − s1)

p+1−q
p ‖ψ‖W �,2(�),

whenever ψ ∈ C∞
0 (�,R

N ). The constant c depends on n, ν, L , p, q, �,� and M .

By the density of C∞
0 (�,R

N ) in W �,2
0 (�,RN ) the last inequality also continues to
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hold for anyψ ∈ W �, 2
0 (�,RN ). Taking the supremum over allψ ∈ W �, 2

0 (�,RN )

satisfying ‖ψ‖W �,2(�) � 1 we deduce that

‖uε(·, s1)− uε(·, s2)‖W−�,2(�) � c |s1 − s2|
p+1−q

p (4.8)

holds true for almost every s1, s2 ∈ (t1, t2). This is the desired weak continuity
property with respect to time for uε; to be more precise, the mapping t �→ uε(·, t) ∈
W −�,2(�,RN ) is Hölder continuous with Hölder exponent p+1−q

p ∈ (0, 1
p ).

4.4. The Variational Formulation

We fix τ ∈ (0, T ]. Since uε satisfies (4.3), the parabolic system (4.2)1 can be
rewritten in the form

∫ τ

0
〈∂t uε, ϕ〉W 1,q (�,RN ) dt +

∫

�τ

〈D fε(Duε), Dϕ〉 dz = 0

for any testing function ϕ ∈ Lq(0, τ ; W 1,q
0 (�,RN )). The convexity of f implies

that 〈D fε(Duε), Dϕ〉 � fε(Dϕ + Duε) − fε(Duε) holds true, and therefore the
preceding identity yields that

∫ τ

0
〈∂t uε, ϕ〉W 1,q (�,RN ) dt +

∫

�τ

fε(Duε + Dϕ)− fε(Duε) dz � 0,

whenever ϕ ∈ Lq(0, τ ; W 1,q
0 (�,RN )). We now perform the substitution v =

uε + ϕ. Of course v ∈ uε + Lq(0, τ ; W 1,q
0 (�,RN )) ⊂ Lq(0, τ ; W 1,q(�,RN ))

and v = uε = g on ∂�×(0, τ ). Moreover, by (4.3) we have ∂tv ∈ Lq ′
(0, τ ; W −1,q ′

(�,RN )), provided we also assume that ∂tϕ ∈ Lq ′
(0, τ ; W −1,q ′

(�,RN )). In terms
of the comparison map v the last inequality can therefore be rewritten in the form

∫ τ

0
〈∂tv, v − uε〉W 1,q (�,RN ) dt +

∫

�τ

fε(Dv)− fε(Duε) dz

�
∫ τ

0
〈∂t (v − uε), v − uε〉W 1,q (�,RN ) dt,

where v is of the form uε + ϕ. But this means that the preceding inequality holds
true for any v ∈ Lq(0, τ ; W 1,q

g (�,RN ))with ∂tv ∈ Lq ′
(0, τ ; W −1,q ′

(�,RN )). As
a consequence of the Aubin-Lions embedding—see [31, Chapter III, Proposition
1.2]—we have that v ∈ C0([0, τ ], L2(�, R

N )). Therefore, the term on the right-
hand side of the last inequality can be simplified to

∫ τ

0
〈∂t (v − uε), v − uε〉W 1,q (�,RN ) dt

= 1
2‖(v − uε)(·, τ )‖2

L2(�)
− 1

2‖(v − g)(·, 0)‖2
L2(�)

.
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Furthermore, if the comparison functionv satisfies ∂tv ∈ L p′
(0, τ ; W −1,p′

(�,RN ))

⊂ Lq ′
(0, τ ; W −1,q ′

(�,RN )), the first integral of the left-hand side can be written
in the following form:

∫ τ

0
〈∂tv, v − uε〉W 1,q (�,RN ) dt =

∫ τ

0
〈∂tv, v − uε〉W 1,p(�,RN ) dt.

Therefore, we obtain that

∫ τ

0
〈∂tv, v − uε〉W 1,p(�,RN ) dt +

∫

�τ

fε(Dv)− fε(Duε) dz

� 1
2‖(v − uε)(·, τ )‖2

L2(�)
− 1

2‖(v − g)(·, 0)‖2
L2(�)

(4.9)

holds true for any comparison function v ∈ Lq(0, τ ; W 1,q
g (�,RN )) whose time

derivative satisfies ∂tv ∈ L p′
(0, τ ; W −1,p′

(�,RN )) . Since the left-hand side of
(4.9) is always infinite for anyv∈ L p(0, τ ; W 1,p

g (�,RN ))\Lq(0, τ ; W 1,q
g (�,RN ))

(note that by definition of fε we have fε(Dv) � ε|Dv|q and therefore
∫
�τ

fε(Dv)
dx = ∞ for such v) while the right-hand side is finite, the inequality (4.9) triv-
ially holds true for v ∈ L p(0, τ ; W 1,p

g (�,RN )) \ Lq(0, τ ; W 1,q
g (�,RN )) with

∂tv ∈ L p′
(0, τ ; W −1,p′

(�,RN )). This proves that uε is a variational solution in
the sense of Definition 2.2. Note that, at this stage, the mappings uε belong to
C0([0, T ]; L2(�,RN )). This property will, however, be lost in the limit ε ↓ 0.

4.5. Passage to the Limit ε ↓ 0

Here, we shall pass to the limit ε ↓ 0 in the variational inequality (4.9).
From (4.5) and (4.6) we know that uε is uniformly bounded (with respect to ε)
in L p(0, T ; W 1,p(�,RN )). Therefore, there exists a (not re-labelled) subsequence
and a function u ∈ L p(0, T ; W 1,p(�,RN )) such that

uε ⇀ u weakly in L p(0, T ; W 1,p(�,RN )
)
.

In order to conclude the weak continuity in time of the limit map u we use a compact-
ness argument from [17], see Theorem A.2 below. From (4.5) we infer that uε is uni-
formly bounded (with respect to ε) in L∞(0, T ; L2(�,RN )), while (4.8) yields that
uε are equicontinuous as functions in C0([0, T ]; W −�, 2(�, R

N )) (more precisely,

we can choose as modulus the function ω(t) := c t
p+1−q

p ). Hence, the hypotheses
of Theorem A.2 are fulfilled and therefore, passing again to a (non-relabeled) sub-
sequence, we see that the limit function u is contained in Cw([0, T ]; L2(�,RN ))

and that

uε(·, t) ⇀ u(·, t) weakly in L2(�,RN ) for any t ∈ [0, T ]
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holds true as ε ↓ 0. Note that uε(·, 0) = g(·, 0) for any ε ∈ (0, 1] implies
that u(·, 0) = g(·, 0). By lower semicontinuity of w �→ ∫

�τ
f (Dw) dz with

respect to weak convergence in L p(0, τ ; W 1,p(�, R
N )) (respectivelyw �→ 1

2‖w−
u(·, τ )‖2

L2(�)
with respect to weak convergence in L2(�,RN )) and the continu-

ity of the pairing w �→ 〈 · , w〉W 1,p(�,RN ) with respect to weak convergence in
W 1,p(�,RN ), we can pass to the limit ε ↓ 0 in (4.9). This leads to

∫ τ

0
〈∂tv, v − u〉W 1,p(�,RN ) dt +

∫

�τ

f (Dv)− f (Du) dz

� 1
2‖(v − u)(·, τ )‖2

L2(�)
− 1

2‖(v − g)(·, 0)‖2
L2(�)

for any τ ∈ (0, T ]. But this means that u is the variational solution we are looking
for.

5. Uniqueness of Variational Solutions

In this chapter we shall prove the uniqueness result, Theorem 2.4. For this pur-
pose we need some prerequisites which we will present in the following subsection
and in Appendix B.

5.1. Mollification in Time

Due to their lack of regularity with respect to time, the variational solutions
are not admissible as comparison functions in (2.5), since the term involving the
time derivative ∂tv would not be well defined. To overcome this difficulty we
shall use a certain mollification in time which has been useful in several other
circumstances, as, for example, for the treatment of evolutionary obstacle problems;
see [6,20,28]. The precise construction of the regularization is as follows: For
v ∈ L1(�T ,R

N ), vo ∈ L1(�,RN ) and h ∈ (0, T ], we define

[v]h(·, t) := e− t
h vo + 1

h

∫ t

0
e

s−t
h v(·, s) ds, (5.1)

for t ∈ [0, T ]. One of the basic features of this mollification is that [v]h (formally)
solves the differential equation

∂t [v]h = − 1
h

([v]h − v
)
,

with initial condition [v]h(·, 0) = vo. This will allow us to pass to the limit in
certain approximations since, in these approximations, the quantity ∂t [v]h([v]h −v)
naturally arises when comparing parabolic variational inequalities. This comes from
the the fact that we can only add, but not subtract, two variational inequalities.
The nice feature of the regularization is that now the quantity ∂t [v]h([v]h − v) is
non-positive. This will be crucial in the proof of the uniqueness result. The basic
properties of the mollification [·]h are provided in Appendix B.
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5.2. Proof of the Uniqueness Result

Now, with the properties of the mollification in time at hand, we come to the
proof of the uniqueness result from Theorem 2.4.

Proof of Theorem 2.4. Suppose that u1 and u2 are two different variational solu-
tions to (2.1). Adding the variational inequalities (2.5) for u1 and u2 and taking
into account the fact that ‖(v − ui )(·, T )‖2

L2(�)
� 0 for i = 1, 2 yields, for any

v ∈ L p(0, T ; W 1,p
g (�, R

N ))with vt ∈ L p′
(0, T ; W −1,p′

(�, R
N )) (note that this

implies v ∈ C0([0, T ]; L2(�,RN ))), that
∫

�T

[ f (Du1)+ f (Du2)] dz

� 2
∫

�T

f (Dv) dz + 2
∫ T

0
〈vt , v − w〉W 1,p(�,RN ) dt + ‖(v − g)(·, 0)‖2

L2(�)
.

Here we have abbreviated w := u1+u2
2 . At this point we would like to choose the

comparison map v = w in the previous inequality. However, this is not allowed,
since we do not know thatwt belongs to L p′

(0, T ; W −1,p′
(�,RN )). For this reason

we introduce, with the mollification [·]h from (5.1), the time-regularized functions

vh := [w − g]h + g, for h ∈ (0, T ].
Since (w− g)(·, 0) = 0, we choose vo ≡ (w− g)(·, 0) = 0 in the definition. This
makes sense, since the mollification should admit the same initial conditions as the
function u − g itself. By Lemma B.2 we have vh ∈ L p(0, T ; W 1,p

g (�, R
N )) ∩

C0([0, T ]; L2(�, R
N )) and vh(·, 0) = g(·, 0). Moreover, from Lemma B.3 we

know that ∂tvh ∈ L p′
(0, T ; W −1,p′

(�, R
N )). Therefore, we are allowed to choose

v = vh as the comparison function in the last inequality. This choice leads to
∫

�T

[ f (Du1)+ f (Du2)] dz

� 2
∫

�T

f (Dvh) dz + 2
∫ T

0
〈∂tvh, vh − w〉W 1,p(�,RN ) dt =: 2(Ih + IIh), (5.2)

with the obvious meaning of Ih and IIh . In order to treat Ih we first rewrite the
integrand in the form

f (Dvh) = f
(
D[w]h + D(g − [g]h)

) =: f
(
D[w]h + Ah

)
,

with the obvious abbreviation Ah := D(g − [g]h). Here, we recall that w(·, 0) =
g(·, 0), and therefore [w−g]h = [w]h −[g]h with [w]h and [g]h defined according
to (5.1) with vo = g(·, 0). Next, we apply the mean value theorem to infer, for a
function μ(x, t) ∈ [0, 1], that

f (Dvh) = f
(
D[w]h

)+ 〈
D f

(
D[w]h + μAh

)
, Ah

〉
.

Since q < p + 1, the second term on the right-hand side can be estimated with the
growth condition for D f from (2.3) and an application of Hölder’s inequality as
follows:
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∣
∣
∣
∣

∫

�T

〈
D f

(
D[w]h + μAh

)
, Ah

〉
dz

∣
∣
∣
∣

� L
∫

�T

|Ah |(1 + |D[w]h + μAh |)q−1 dz

� c

[ ∫

�T

|Ah | p
p+1−q dz

] p+1−q
p

[ ∫

�T

1 + |D[w]h |p + |Ah |p dz

] q−1
p

,

for a constant c = c(p, q, L). Now we use the hypotheses on the datum g to control
the integrals involving Ah . The first integral converges to 0 as h ↓ 0 by Lemma

B.2 (ii), since g ∈ L
p

p+1−q (0, T ; W 1, p
p+1−q (�,RN )). More precisely, we have

[ ∫

�T

|Ah | p
p+1−q dz

] p+1−q
p =

[ ∫

�T

|D(g − [g]h)|
p

p+1−q dz

] p+1−q
p → 0

as h ↓ 0. The second integral can be bounded uniformly with respect to h, again,
by an application of Lemma B.2 (i), since w, g ∈ L p(0, T ; W 1,p(�,RN )). Here
we have the estimate

[ ∫

�T

|D[w]h |p + |Ah |p dz

] 1
p

� c

[ ∫

�T

|Dg|p + |Du1|p + |Du2|p dz + h
∫

�

|Dg(·, 0)|p dx

] 1
p

,

where the constant c depends only p. Joining the last two inequalities therefore
implies

lim
h↓0

∣
∣
∣
∣

∫

�T

〈
D f

(
D[w]h + μAh

)
, Ah

〉
dz

∣
∣
∣
∣ = 0.

It remains to treat the integral involving f (D[w]h). For this we observe that

1

h(1 − e− t
h )

∫ t

0
e

s−t
h ds = 1.

This allows us to interpret the mollification [w]h—modulo a multiplicative factor—
as a mean with respect to the measure e

s−t
h ds. Therefore, we rewrite f (D[w]h)

according to this interpretation and afterwards use the convexity of f and Jensen’s
inequality. This procedure yields a pointwise bound of the term in question as
follows:

f
(
D[w]h(·, t)

) = f

(
e− t

h Dg(·, 0)+ 1 − e− t
h

h(1 − e− t
h )

∫ t

0
Dw(·, t)e

s−t
h ds

)

� e− t
h f (Dg(·, 0))+ (

1 − e− t
h
)

f

(
1

h(1 − e− t
h )

∫ t

0
Dw(·, t)e

s−t
h ds

)

� e− t
h f (Dg(·, 0))+ 1 − e− t

h

h(1 − e− t
h )

∫ t

0
f
(
Dw(·, t)

)
e

s−t
h ds

= [
f (Dw)

]
h(·, t),
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where [ f (Dw)]h is defined according to (5.1) with vo = f (Dg(·, 0)). Since
f (Dw) ∈ L1(0, T ; L1(�)) = L1(�T ) and f (Dg(·, 0)) ∈ L1(�), we have by
Lemma B.2 (i) the uniform bound

∥
∥[ f (Dw)

]
h

∥
∥

L1(�T )

� ‖ f (Dw)‖L1(�T )
+ h‖ f (Dg(·, 0))‖L1(�)

� 1
2‖ f (Du1)‖L1(�T )

+ 1
2‖ f (Du2)‖L1(�T )

+ h‖ f (Dg(·, 0))‖L1(�) < ∞,

where we used for the last inequality the fact that u1 and u2 are variational solutions,
which implies, in particular, that ‖ f (Dui )‖L1(�T )

< ∞ for i = 1, 2. Since the
second term, that is, the term h‖ f (Dg(·, 0))‖L1(�), vanishes in the limit h ↓ 0, a
variant of the dominated convergence theorem implies that

lim
h↓0

∫

�T

f
([Dw]h

)
dz =

∫

�T

f (Dw) dz =
∫

�T

f
( 1

2 Du1 + 1
2 Du2

)
dz (5.3)

holds true. This finishes the treatment of the first term appearing on the right-hand
side of (5.2); it remains to consider the second term IIh . We rewrite IIh as follows:

IIh = II(1)h + II(2)h + II(3)h ,

where we have abbreviated

II(1)h :=
∫

�T

∂t [w]h([w]h − w) dz,

II(2)h :=
∫

�T

∂t [w]h · (g − [g]h) dz,

II(3)h :=
∫ T

0
〈∂t g − ∂t [g]h, [w − g]h − (w − g)〉W 1,p(�) dt.

Due to Lemma B.2 (iv) we know that the first term is non-negative, since

II(1)h = − 1
h

∫

�T

∣
∣[w]h − w

∣
∣2 dz � 0.

Using the fact that [w]h → w in L p(0, T ; W 1,p(�, R
N )), and the uniform bound

for the norm of ∂t [g]h in L p′
(0, T ; W −1,p′

(�, R
N )) by ‖∂t g‖L p′

(0,T ;W−1,p′
(�,RN ))

(see Lemma B.3), we obtain in the limit h ↓ 0 that there holds

II(2)h = − 1

h

∫

�T

([w]h − w) · (g − [g]h) dz

= −
∫

�T

([w]h − w) · ∂t [g]h dz

= −
∫ T

0
〈∂t [g]h, [w]h − w〉W 1,p(�) dt → 0.
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The same reasoning can be used to treat the term II(3)h , since [w − g]h → w − g
strongly in L p(0, T ; W 1,p(�, R

N )). Therefore, we have

lim
h↓0

II(3)h = 0.

Altogether we have established that

lim sup
h↓0

IIh � 0. (5.4)

With (5.3) and (5.4) at hand we can pass in (5.2) to the limit h ↓ 0 to obtain that
∫

�T

[ f (Du1)+ f (Du2)] dz � 2
∫

�T

f
( 1

2 Du1 + 1
2 Du2

)
dz

<

∫

�T

[ f (Du1)+ f (Du2)] dz.

In the last step we used the strict convexity of f and the assumption that u1 �= u2.
Thus we arrived with the preceding inequality at the desired contradiction. This
proves the uniqueness of variational solutions. ��

6. A Local Lq -Estimate for the Spatial Gradient

In this Section we prove quantitative, local interior Lq -estimates for the spatial
gradient Du of weak solutions in terms of their local L p-norm. These estimates
shall be proved as a priori estimates, in the sense that we initially assume Du ∈
Lq

loc(�T ,R
Nn). Therefore, they are not directly applicable to variational solutions.

Later on, these a priori estimates will be applied in an approximation scheme,
that is, an approximating sequence of solutions to regularized problems for which
the higher integrability assumption is known to hold true. Before we start with the
proof of the higher integrability estimate, we shall provide the necessary facts about
parabolic function spaces.

6.1. Parabolic Function Spaces

The first Lemma is a parabolic version of Sobolev’s inequality, which follows
from Gagliardo–Nirenber’s inequality. The statement can be found, for instance, in
[12, Chapter I, Proposition 3.1].

Lemma 6.1. Let σ � 1, Q�(zo) ≡ B�(xo)× (to − �2, to) ⊂ R
n+1 and

u ∈ Lσ
(
to − �2, to; W 1,σ (B�(xo))

) ∩ C0(to − �2to; L2(B�(xo))
)
.

Then, u ∈ L
σ(n+2)

n (Q�(zo)), and there exists a constant c = c(n, σ ) such that

−
∫

Q�(zo)

∣
∣
∣
u

�

∣
∣
∣
σ(n+2)

n
dz

� c −
∫

Q�(zo)

(
|Du|σ +

∣
∣
∣
u

�

∣
∣
∣
σ)

dz

(
sup

t∈(to−�2,to)
−
∫

B�(xo)

|u(·, t)|2 dx

) σ
n

.
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The following results are concerned with elliptic and parabolic fractional
Sobolev spaces. Since embeddings of such spaces provide certain higher inte-
grability properties, they will play a crucial role in the proof of the a priori es-
timate. We first recall their definitions. We say that f ∈ W k,p(�, R

k) with
1 � p < ∞, k ∈ N0 belongs to the fractional Sobolev space W k+α, p(�, R

k),
with α ∈ (0, 1), if the Gagliardo semi-norm [Dβ f ]α,p;� of any weak partial deriv-
ative Dβ f of order |β| = k is finite; here, the Gagliardo semi-norm is defined
by

[Dβ f ]p
α, p;� :=

∫

�

∫

�

|Dβ f (x)− Dβ f (y)|p

|x − y|n+αp
dx dy

for any multiindex β ∈ N
n
0 with |β| = k. Endowing W k+α, p(�, R

k)with the norm

‖ f ‖W k+α, p(�) := ‖ f ‖W k,p(�) +
∑

|β|=k

[Dβ f ]α,p;�,

W k+α, p(�, R
k) becomes a Banach space. Later on, we will need a Gagliardo–

Nirenberg inequality for fractional Sobolev spaces as stated in Lemma 6.4. This
inequality will be a consequence of an interpolation inequality from [7, Corollary
3.2] and a fractional Sobolev inequality, which can be found, for instance, in [13,
Theorem 6.5].

Lemma 6.2. (Fractional interpolation) Assume that 0 � α1 < α2 < ∞, 1 <

p1, p2 < ∞ and θ ∈ (0, 1). Let α and p denote the convex combinations of α1, α2
(respectively 1

p1
, 1

p2
), that is,

α = θα1 + (1 − θ)α2,
1

p
= θ

p1
+ 1 − θ

p2
. (6.1)

Finally, suppose that f ∈ Wα1,p1(Rn) ∩ Wα2,p2(Rn). Then, f ∈ Wα,p(Rn), and
there exists a constant c = c(α1, α2, p1, p2, θ) such that

‖ f ‖Wα,p(Rn) � c ‖ f ‖θWα1,p1 (Rn)‖ f ‖1−θ
Wα2,p2 (Rn)

.

Lemma 6.3. (Fractional Sobolev embedding) Let α ∈ (0, 1) and p ∈ [1,∞) such

that αp < n. Then, for any f ∈ Wα,p(Rn) we have f ∈ L
np

n−αp (Rn), and there
exists a constant c = c(n, s, α) such that

‖ f ‖
L

np
n−αp (Rn)

� c [ f ]α,p;Rn .

With these versions of interpolation and embedding in fractional Sobolev spaces
we are able to establish the fractional Gagliardo–Nirenberg inequality, which is
suited for our purposes. We note that for Besov-spaces a similar inequality has been
proved in [21, Corollary 2]. For the sake of completeness we provide a proof in the
setting of fractional Sobolev-spaces.
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Lemma 6.4. (Fractional Gagliardo–Nirenberg inequality) Let B�(xo) ⊂ R
n, with

� � 1 and λ,μ, θ ∈ (0, 1), 1 < p, r < s < ∞, such that

− n

s
� θ

(
λ− n

p

)
− (1 − θ)

(
1 − μ+ n

r

)
(6.2)

holds true. Suppose that f ∈ W 1+λ,p(B�(xo)) ∩ Wμ,r (B�(xo)). Then, D f ∈
Ls(Bϑ(xo)) for any radius 0 < ϑ < �, and there exists a constant c = c(n, μ, λ, r,
p, s, θ, 1/(� − ϑ)) such that

‖D f ‖Ls (Bϑ (xo)) � c ‖ f ‖θW 1+λ,p(B�(xo))
‖ f ‖1−θ

Wμ,r (B�(xo))
.

Proof. We choose a cut-off function η ∈ C2
0 (B�(xo), [0, 1]) such that η ≡ 1 on

Bϑ(xo) and ‖η‖∞ + (� − ϑ)‖Dη‖∞ + (� − ϑ)2‖D2η‖∞ � c.
Next, we choose α according to

n + αs

ns
= θ

p
+ 1 − θ

r
. (6.3)

Then, by (6.2) we have

α = θn

p
+ (1 − θ)n

r
− n

s

� θn

p
+ (1 − θ)n

r
+ θ

(
λ− n

p

)
− (1 − θ)

(
1 − μ+ n

r

)

= θλ− (1 − θ)(1 − μ) < 1. (6.4)

Since p, r < s, we also have that

α = θ
( n

p
− n

s

)
+ (1 − θ)

(n

r
− n

s

)
> 0.

Therefore, we can apply Lemma 6.3 with (α, ns
n+αs ) instead of (α, p) to f η to infer

that

‖D f ‖Ls (Bϑ (xo)) � ‖D( f η)‖Ls (Rn) � c(n, s, θ) [D( f η)]α, ns
n+αs ;Rn .

By our choice ofα from (6.3) we are allowed to apply Lemma 6.2 with (1+α, 1+λ,
μ, ns

n+αs , p, r) instead of (α, α1, α2, p, p1, p2) to the right-hand side. Note that at
this stage we have taken into account that 1 + α � θ(1 + λ)+ (1 − θ)μ, which is
a consequence of (6.4) and therefore of (6.2). We also mention that we can always
apply Lemma 6.2 to values ofα (in our case 1+α) for which�holds in (6.1)1. This is
a consequence of the embedding W θ(1+λ)+(1−θ)μ,p(B�(xo)) ↪→ W 1+α, p(B�(xo))

and the fact that η f has its support in B�(xo); this is relevant only in the case that
1 +α < θ(1 +λ)+ (1 − θ)μ. The application of Lemma 6.2, therefore, yields that

‖D f ‖Ls (Br (xo)) � c ‖ f η‖θW 1+λ,p(Rn)
‖ f η‖1−θ

Wμ,r (Rn)

� c ‖ f ‖θW 1+λ,p(B�(xo))
‖ f ‖1−θ

Wμ,r (B�(xo))

holds true for a constant c = c(n, μ, λ, r, p, s, θ, 1/(� − ϑ)). ��
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We also need a parabolic version of fractional Sobolev spaces. We say that
u ∈ L p(0, T ; W k,p(�, R

k)) with 1 � p < ∞, k ∈ N0, α ∈ (0, 1) belongs to
the parabolic fractional Sobolev space L p(0, T ; W k+α,p(�, R

k)) if the parabolic
Gagliardo semi-norm

[Dβu]p
α, 0,p;�T

:=
∫ T

0

∫

�

∫

�

|Dβu(x, t)− Dβu(y, t)|p

|x − y|n+αp
dx dy dt

is finite for any multiindex β ∈ N
n
0 with |β| = k. As in the time independent elliptic

setting, L p(0, T ; W k+α, p(�, R
k)) becomes a Banach-space with the norm

‖u‖k+α, 0,p;�T := ‖u‖L p(0,T ;W k,p(�,Rk ) +
∑

|β|=k

[Dβ f ]α, 0,p;�T .

The next lemma provides an embedding result for the fractional parabolic Sobolev
spaces and is an immediate consequence of the fractional Gagliardo–Nirenberg
inequality from Lemma 6.4.

Lemma 6.5. (Parabolic fractional Sobolev inequality) Let B�(zo)×(t1, t2) ⊂ R
n+1

be a general space-time cylinder with � � 1 and λ,μ ∈ (0, 1), 1 < p, r < s < ∞
parameters such that

(s − p)
(

1 − μ+ n

r

)
� λp. (6.5)

Further, assume that u ∈ L p(t1, t2; W 1+λ,p(B�(xo)))∩L∞(t1, t2; Wμ,r (B�(xo))).
Then, Du ∈ Ls(Bϑ(xo) × (t1, t2)) for any 0 < ϑ < � and, moreover, the quanti-
tative estimate

‖Du‖Ls (Bϑ (xo)×(t1,t2)) � c ‖u‖
p
s
L p(t1,t2;W 1+λ,p(B�(xo)))

sup
t∈(t1,t2)

‖u(·, t)‖
s−p

s
Wμ,r (B�(xo))

holds true with a constant c = c(n, μ, λ, r, p, s, 1/(� − ϑ)).

Proof. For almost every t ∈ (t1, t2) we have u(·, t) ∈ W 1+λ,p(B�(xo)) ∩ Wμ,r

(B�(xo)). Moreover, assumption (6.5) implies that hypothesis (6.2) in Lemma 6.4
is fulfilled for the choice θ = p

s . Applying Lemma 6.4 slicewise to u(·, t) on B�(xo)

we obtain
∫ t2

t1

∫

Bϑ (xo)

|Du|s dx dt

� c
∫ t2

t1
‖u(·, t)‖θs

W 1+λ,p(B�(xo))
‖u(·, t)‖(1−θ)s

Wμ,r (B�(xo))
dt

= c
∫ t2

t1
‖u(·, t)‖p

W 1+λ,p(B�(xo))
‖u(·, t)‖s−p

Wμ,r (B�(xo))
dt

� c
∫ t2

t1
‖u(·, t)‖p

W 1+λ,p(B�(xo))
dt sup

t∈(t1,t2)
‖u(·, t)‖s−p

Lμ,r (B�(xo))
,

where c stands for the constant from Lemma 6.4 and therefore depends on n, μ, λ, r,
p, s and 1/(� − ϑ). This proves the assertion of the lemma. ��



242 Verena Bögelein, Frank Duzaar & Paolo Marcellini

Finally, we need an elliptic and parabolic version of the embedding from Nikol-
skii spaces, which are defined via finite differences, into fractional Sobolev spaces.
The first part of the following Lemma is a consequence of [3, 7.73], while the
second one is taken from [14, Proposition 2.9].

Lemma 6.6. Let k ∈ N, �̃ � �, θ ∈ (0, 1) and 0 � t1 < t2 � T .

(i) Assume that u ∈ L∞(0, T ; L2(�,Rk)) satisfies

sup
t∈(t1,t2)

∫

�̃

|u(x + hei , t)− u(x, t)|2 dx � M |h|2θ

for every i ∈ {1, . . . , n} and h ∈ R with |h| � min{dist(�̃, ∂�), A}, where
A,M > 0. Then for every α ∈ (0, θ) and O � �̃ there exists a constant
c = c(n, θ, α, A, dist(O, ∂�̃), dist(�, �̃)) such that

sup
t∈(t1,t2)

[u(·, t)]2
α,p;O ≡ sup

t∈(t1,t2)

∫

O

∫

O
|u(x, t)− u(y, t)|2

|x − y|n+2α dx dy � c M.

(ii) Assume that u ∈ L p(�T ,R
k) satisfies

∫ t2

t1

∫

�̃

|u(x + hei , t)− u(x, t)|p dx dt � M |h|θp

for every i ∈ {1, . . . , n} and h ∈ R with |h| � min{dist(�̃, ∂�), A}, where
A,M > 0. Then for every γ ∈ (0, θ) and O � �̃ there exists a constant
c = c(n, θ, γ, A, dist(O, ∂�̃), dist(�, �̃)) such that

[u]p
α,0,p;O×(t1,t2) ≡

∫ t2

t1

∫

O

∫

O
|u(x, t)− u(y, t)|p

|x − y|n+pγ
dx dy dt � c M.

With these prerequisites at hand we can now start with the proof of the
Lq -estimate for the gradient.

6.2. Caccioppoli Inequality for Finite Differences

The first step in most proofs of higher integrability for the spatial gradient is
usually a Caccioppoli inequality, that is, an inequality of the type of a reverse
Poincaré inequality. Since for systems of the type considered here we do not know
that second spatial derivatives exist, we need a version for finite differences of Du.
By τh,i [v] with i ∈ {1, . . . , n} we denote the finite difference of a function v in the
spatial direction ei with increment h, that is, for v ∈ L1(�T ) we define

τh,i [v](x, t) := v(x + hei , t)− v(x, t)

for (x, t) ∈ �T such that also (x + hei , t) ∈ �T . Then we have the following
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Lemma 6.7. (Caccioppoli inequality) Let

u ∈ L p(0, T ; W 1,p(�,RN )
)∩ Lq

loc

(
0,T ; W 1,q

loc (�,R
N )
) ∩ C0([0, T ];L2(�,RN )

)

be a weak solution to (2.7) where the structural conditions (2.9) are in force. Then,
for any parabolic cylinder Q�(zo) � �T , any 0 < r < �, any 0 < |h| <
dist(B�(xo), ∂�) and any i ∈ {1, . . . , n} there holds

sup
t∈(to−r2,to)

∫

Br (xo)

|τh,i [u](·, t)|2 dx +
∫

Qr (zo)

|τh,i [Du]|p dz

� c

(� − r)2

∫

Q�(zo)

(|Du| + |τh,i [Du]|)q−2|τh,i [u]|2 + |τh,i [u]|2 dz,

with a constant c = c(ν, L , p, q).

Proof. Without loss of generality, we assume that zo = 0 and write Q� instead of
Q�(0). In the weak formulation of (2.7), that is, in

∫

�T

u · ϕt − 〈D f (Du), Dϕ〉 dz = 0 for all ϕ ∈ C∞
0 (�T ,R

N ),

we replace ϕ by τ−h,i [ϕ] with 0 < |h| � 1 and perform an “integration by parts
for finite differences”. This leads us to

∫

�T

τh,i [u] · ϕt − 〈
τh,i [D f (Du)], Dϕ

〉
dz = 0

for all ϕ ∈ C∞
0 (�T ,R

N ) and |h| small enough. In the following, we shall proceed
formally concerning the use of the time derivative ∂t u. However, the arguments
can be made rigorous by the use of a mollifying procedure with respect to time,
as for instance by Steklov averages. Since these arguments are standard we shall
omit them and proceed formally. In the preceding identity we choose the testing
function ϕ(x, t) = τh,i [u](x, t)η2(x)ζ(t)χθ (t), where η ∈ C1

0(B�, [0, 1]), ζ ∈
W 1,∞(R, [0, 1]) and χθ ∈ W 1,∞(R, [0, 1]) are cut-off functions. The spatial cut-
off function η satisfies η ≡ 1 on Br , |Dη| � 2/(� − r), while ζ is defined by

ζ(t) :=

⎧
⎪⎨

⎪⎩

0 for t ∈ (−∞,−�2]
1

�2−r2 (t + �2) for t ∈ [−�2,−r2)

1 for t ∈ [−r2,∞)

and χθ is given by

χθ (t) :=

⎧
⎪⎨

⎪⎩

1 for t ∈ (−∞, τ − θ ]
1
θ
(τ − t) for t ∈ (τ − θ, τ ]

0 for t ∈ (τ, 0]
, (6.6)
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for some τ ∈ (−r2, 0) and θ ∈ (0, r2 + τ). With this choice of the testing function
ϕ we obtain from the last identity

−
∫

Q�

τh,i [u] · ∂t (τh,i [u]ζχθ )η2 dz +
∫

Q�

〈
τh,i [D f (Du)], τh,i [Du]〉η2ζχθ dz

= −
∫

Q�

〈
τh,i [D f (Du)],∇η2 ⊗ τh,i [u]〉ζχθ dz. (6.7)

For the first term on the left-hand side we compute for almost every τ ∈ (−r2, 0)
that

−
∫

Q�

τh,i u · ∂t (τh,i [u]ζχθ )η2 dz =
∫

Q�

∂tτh,i [u] · τh,i [u]η2ζχθ dz

= 1
2

∫

Q�

∂t |τh,i [u]|2η2ζχθ dz = − 1
2

∫

Q�

|τh,i [u]|2η2∂t (ζχθ ) dz

= − 1

2(�2 − r2)

∫ −r2

−�2

∫

B�
|τh,i [u]|2η2 dx dt + 1

2θ

∫ τ

τ−θ

∫

B�
|τh,i [u]|2η2 dx dt

→ − 1

2(�2 − r2)

∫ −r2

−�2

∫

B�
|τh,i [u]|2η2 dx dt + 1

2

∫

B�
|τh,i [u](·, τ )|2η2 dx,

in the limit θ ↓ 0. Passing also in the other terms in (6.7) to the limit θ ↓ 0 and
taking into account that 1/(�2 − r2) � 1/(� − r)2, we infer

1
2 I + II := 1

2

∫

B�
|τh,i [u](·, τ )|2η2 dx +

∫

Qτ
�

〈
τh,i [D f (Du)], τh,i [Du]〉η2ζ dz

� −2
∫

Qτ
�

〈
τh,i [D f (Du)],∇η ⊗ τh,i [u]〉ηζ dz+ 1

2(� − r)2

∫

Q�

|τh,i [u]|2η2 dz

=: III + IV, (6.8)

where we introduced the shorthand notion Qτ
� := B� × (−�2, τ ). We rewrite the

term II in the following way:

II =
∫

Qτ
�

∫ 1

0

〈
D2 f (Du + sτh,i [Du])τh,i [Du], τh,i [Du]〉η2ζ ds dz.

Similarly, in the term III we rewrite the finite difference τh,i [D f (Du)] and then
use the Cauchy–Schwartz inequality for the symmetric bilinear form (σ, σ̃ ) �→
〈D2 f (Du)σ, σ̃ 〉. This leads us to the estimate

III = −2
∫

Qτ
�

∫ 1

0

〈
D2 f (Du + sτh,i [Du])τh,i [Du],∇η ⊗ τh,i [u]〉ηζ ds dz

� 1
2 II+2

∫

Qτ
�

∫ 1

0

〈
D2 f (Du + sτh,i [Du])∇η ⊗ τh,i [u], ∇η ⊗ τh,i [u]〉ζ ds dz.
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We use the preceding inequality in (6.8) and reabsorb the integral 1
2 II on the left-

hand side. Subsequently, we use assumption (2.9)2 and the choice of η, that is,
|Dη| � 2/(� − r) to infer that

I+II � 4
∫

Qτ
�

∫ 1

0

〈
D2 f (Du + sτh,i [Du])∇η ⊗ τh,i [u],∇η ⊗ τh,i u

〉
ζ ds dz+2 IV

� 4L
∫

Qτ
�

∫ 1

0

(
1 + |Du + sτh,i [Du]|q−2)∣∣∇η ⊗ τh,i [u]∣∣2 ds dz + 2 IV

� c(q, L)

(� − r)2

∫

Qτ
�

[
1 + (|Du|2 + |τh,i [Du]|2) q−2

2
]
|τh,i [u]|2 dz + 2 IV.

With the help of (2.9)3, Lemma 3.3 and the fact that we restrict ourselves to the
case p � 2, we estimate the term II from below as follows:

II � ν

∫

Qτ
�

∫ 1

0
|Du + sτh,i [Du]|p−2|τh,i [Du]|2η2ζ ds dz

� ν
c

∫

Qτ
�

(|Du(x, t)|2 + |Du(x + hei , t)|2) p−2
2
∣
∣τh,i [Du]∣∣2η2ζ dz

� ν
c

∫

Qτ
�

|τh,i [Du]|pη2ζ dz

for a constant c = c(p). Inserting this above we see that

∫

B�
|τh,i [u](·, τ )|2η2 dx +

∫

Qτ
�

|τh,i [Du]|pη2ζ dz

� c

(� − r)2

∫

Q�

(|Du| + |τh,i [Du]|)q−2|τh,i [u]|2 + |τh,i [u]|2 dz

holds true with a constant c = c(ν, L , p, q). Note that the preceding inequality
holds for almost every τ ∈ (−r2, 0). Therefore, we can use it in two different
directions: In the first term on the left-hand side we take the supremum over τ ∈
(−r2, 0), while for the second one we let τ ↑ 0. Proceeding in this way and taking
into account the properties of the cut-off functions η, ζ , particularly that η ≡ 1 in
Br and ζ ≡ 1 in (−r2, 0), we conclude the desired Caccioppoli inequality. ��

6.3. Quantitative Higher Integrability

In this section we provide a first quantitative higher integrability estimate. The
structure of the estimate is as follows: for any exponent σ ∈ [p, q) we prove that
there exists S(σ ) > σ such that for any integrability exponent s < S(σ ) the local
Ls -energy of Du can be bounded in terms of the local Lσ -energy of Du. The
precise result is as follows
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Lemma 6.8. (Improvement of integrability) Let

u ∈ L p(0, T ; W 1,p(�,RN )
)∩ Lq

loc

(
0, T ; W 1,q

loc (�,R
N )
) ∩ C0([0, T ];L2(�,RN )

)

be a weak solution of (2.7) where the structural conditions (2.9) are in force. Then,
for any σ ∈ [p, q), any cylinder Q�(zo) � �T , any radius r ∈ [�/2, �) and any

s < S(σ ) := p + 4n2 − 2n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
, (6.9)

the quantitative higher integrability estimate
∫

Qr (zo)

|Du|s dz � c

(∫

Q�(zo)

|Du|σ dz + Mzo,�

) n+2
n

(6.10)

holds true with a constant c = c(n, ν, L , p, q, σ, s, �, r). Here, we have abbrevi-
ated

Mzo,� := 1 + sup
t∈(to−�2,to)

∫

B�(xo)

|u(·, t)|2 dx +
∫

Q�(zo)

|u|p dz. (6.11)

Proof. We choose two radii �1, �2 such that �+r
2 � �1 < �2 � 3�+r

4 and consider
increments 0 < |h| < 1

4 (� − r). These choices ensure that |h| < � − �2, and
therefore x + hei ∈ B�(xo), whenever x ∈ B�2(xo) and i ∈ {1, . . . , n}. Next, we
define

α := 2 − (n + 2)(q − σ)

n
∈ (0, 2). (6.12)

Note that α > 0 by our hypothesis (2.8). We now apply the Caccioppoli type
inequality from Lemma 6.7 with (�1, �2) instead of (r, �), Hölder’s inequality and
a standard estimate for finite differences to obtain, for any i ∈ {1, . . . , n}, that

sup
t∈(to−�2

1,to)

∫

B�1 (xo)

|τh,i [u](·, t)|2 dx +
∫

Q�1 (zo)

|τh,i [Du]|p dz

� c

(�2 − �1)2

∫

Q�2 (zo)

(
1 + |Du| + |τh,i Du|)q−2|τh,i u|α|τh,i u|2−α dz

� c

(�2 − �1)2

(∫

Q�2 (zo)

(
1 + |Du| + |τh,i [Du]|)σ

) q−2
σ

×
(∫

Q�2 (zo)

|τh,i [u]|σ dz

) α
σ

×
(∫

Q�2 (zo)

|τh,i [u]| σ(2−α)
σ−α−(q−2) dz

) σ−α−(q−2)
σ

� c |h|α
(�2 − �1)2

(∫

Q�(zo)

(1 + |Du|)σ
) q+α−2

σ

×
(∫

Q�2 (zo)

|τh,i [u]| σ(2−α)
σ−α−(q−2) dz

) σ−α−(q−2)
σ

(6.13)
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holds with a constant c = c(ν, L , p, q). It now remains to estimate the last term
on the right-hand side of (6.13). This will be achieved by an application of the
parabolic Sobolev inequality from Lemma 6.1. We observe that by our choice of α
in (6.12) we have

σ(2 − α)

σ − α − (q − 2)
= σ(n + 2)

2
.

Therefore, applying Lemma 6.1 leads us to
∫

Q�2 (zo)

|τh,i [u]| σ(2−α)
σ−α−(q−2) dz =

∫

Q�2 (zo)

|τh,i [u]| σ(n+2)
2 dz

� c
∫

Q�2 (zo)

|D[τh,i u]|σ +
∣
∣
∣
τh,i [u]
�2

∣
∣
∣
σ

dz

×
(

sup
t∈(to−�2

2,to)

∫

B�2 (xo)

|τh,i [u](·, t)|2 dx

) σ
n

,

for a constant c = c(n, σ ). Recalling that |h| < � − �2 < �2 we can estimate the
first integral on the right-hand side of the preceding inequality by

∫

Q�2 (zo)

|D[τh,i u]|σ +
∣
∣
∣
τh,i [u]
�2

∣
∣
∣
σ

dz �
∫

Q�(zo)

|Du|σ + ( |h|
�2

)σ |Du|σ dz

� 2
∫

Q�(zo)

|Du|σ dz.

Inserting this into the second last inequality and joining the result with (6.13), we
get

sup
t∈(to−�2

1,to)

∫

B�1 (xo)

|τh,i [u](·, t)|2 dx +
∫

Q�1 (zo)

|τh,i [Du]|p dz

� c |h|α
(�2 − �1)2

∫

Q�(zo)

(1 + |Du|)σ dz

×
(

sup
t∈(to−�2

2,to)

∫

B�2 (xo)

|τh,i [u](·, t)|2 dx

) σ−α−(q−2)
n

,

where c = c(n, ν, L , p, q, σ ). To the right-hand side we apply Young’s inequality
and take into account that the Hölder conjugate of n/(σ −α− (q − 2)) is given by

n

n − σ + α + q − 2
= n2

n2 − 2(q − σ)
.

This leads us to

sup
t∈(to−�2

1,to)

∫

B�1 (xo)

|τh,i [u](·, t)|2 dx +
∫

Q�1 (zo)

|τh,i [Du]|p dz
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� 1
2 sup

t∈(to−�2
2,to)

∫

B�2 (xo)

|τh,i [u](·, t)|2 dx

+ c

( |h|α
(�2 − �1)2

∫

Q�(zo)

(|Du| + 1)σ dz

) n2

n2−2(q−σ)
,

where c = c(n, ν, L , p, q, σ ). For the application of Young’s inequality we need to
have that 2(q −σ) < n2, which is a consequence of (2.8). With the help of Lemma
3.1 we can reabsorb the sup-term from the right into the left-hand side, yielding
that

sup
t∈(to−r2

1 ,to)

∫

Br1 (xo)

|τh,i [u](·, t)|2 dx +
∫

Qr1 (zo)

|τh,i [Du]|p dz

� c

( |h|α
(� − r)2

∫

Q�(zo)

(1 + |Du|)σ dz

) n2

n2−2(q−σ)
,

where r1 := �+r
2 . We also abbreviate ro := �+3r

4 , so that r < ro < r1. Now,
the embedding of parabolic Nikolskii spaces into fractional Sobolev spaces from
Lemma 6.6 implies that

u ∈ L p(to − r2
o , to; W 1+λ,p(Bro(xo),R

N )
) ∩ L∞(

to − r2
o , to; Wμ,2(Bro(xo),R

N )
)

holds for any

λ <
αn2

p(n2 − 2(q − σ))
=: λ̃ and μ <

αn2

2(n2 − 2(q − σ))
=: μ̃. (6.14)

Note that pλ̃ = 2μ̃ and λ̃ � μ̃ < 1. Furthermore, the Lemma also implies the
quantitative estimates

[Du]p
λ,0,p;Qro (xo)

� c

(∫

Q�(zo)

(1 + |Du|)σ dz

) n2

n2−2(q−σ)

and

sup
t∈(to−r2

o ,to)
[u(·, t)]2

μ,2;Bro (xo)
� c

(∫

Q�(zo)

(1 + |Du|)σ dz

) n2

n2−2(q−σ)
.

Note that c = c(n, ν, L , p, q, σ, μ, λ, �, r). These bounds allow us to estimate the
L p−W 1+λ,p-norm of u on Qro(zo) as follows:

‖u‖L p(to−r2
o ,to;W 1+λ,p(Bro (xo)))

= ‖u‖L p(Qro (zo)) + ‖Du‖L p(Qro (zo)) + [Du]λ,0,p;Qro (zo)

� c

(
‖u‖L p(Q�(zo)) + ‖Du‖Lσ (Q�(zo)) + ‖Du‖

σn2

p(n2−2(q−σ))
Lσ (Q�(zo))

+ 1

)

� c

(∫

Q�(zo)

|Du|σ dz + Mzo,�

) n2

p(n2−2(q−σ))
.
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Similarly, for the L∞−Wμ,2-norm of u we obtain

sup
t∈(to−r2

o ,to)
‖u(·, t)‖Wμ,2(Bro (xo))

= sup
t∈(to−r2

o ,to)
‖u(·, t)‖L2(Bro (xo))

+ sup
t∈(to−r2

o ,to)
[u(·, t)]μ,2;Bro (xo)

� c

(
sup

t∈(to−�2,to)
‖u(·, t)‖L2(B�(xo))

+ ‖Du‖
σn2

2(n2−2(q−σ))
Lσ (Q�(zo))

+ 1

)

� c

(∫

Q�(zo)

|Du|σ dz + Mzo,�

) n2

2(n2−2(q−σ))
.

We now want to apply Lemma 6.5. For this we first need to check that hypothesis
(6.5) is satisfied. By the definitions of S(σ ), λ̃, α, the fact that μ̃ = pλ̃/2 and since
s < S(σ ), we have

(s − p)
(

1 − μ̃+ n

2

) 1

λ̃p
< (S(σ )− p)

(
1 − μ̃+ n

2

) 1

λ̃p

= 4n2 − 2n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
·
(

1 − λ̃p

2
+ n

2

) 1

λ̃p

= 2 · 2n2 − n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
·
(n + 2

2λ̃p
− 1

2

)

= 2 · 2n2 − n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
·
( (n + 2)(n2 − 2(q − σ))

2αn2 − 1

2

)

= 2n2 − n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
·
( (n + 2)(n2 − 2(q − σ))

αn2 − 1
)

= 2n2 − n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
·
( (n + 2)(n2 − 2(q − σ))

2n2 − n(n + 2)(q − σ)
− 1

)

= (n + 2)(n2 − 2(q − σ))− 2n2 + n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)

= n3 − 2(n + 2)(q − σ)+ n(n + 2)(q − σ)

n3 + (n2 − 4)(q − σ)
= 1.

Therefore, we can choose λ and μ according to (6.14) in such a way that (6.5) is
satisfied with r = 2, that is, that

(s − p)
(

1 − μ+ n

2

)
� λp

holds true. This is possible since the preceding strict inequality is valid with μ̃ and
λ̃. This fixes λ,μ in dependence on n, p, q, σ and s. The fractional embedding
from Lemma 6.5 therefore implies Du ∈ Ls(Qr (zo),R

Nn) for any integrability
exponent s as in (6.9). Moreover, the following quantitative higher integrability
estimate holds:
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∫

Qr (zo)

|Du|s dz � c ‖u‖p
L p(to−r2

o ,to;W 1+λ,p(Bro (xo)))
sup

t∈(to−r2
o ,to)

‖u(·, t)‖s−p
Wμ,2(Bro (xo))

� c

(∫

Q�(zo)

|Du|σ dz + M�,zo

) n2

n2−2(q−σ) ·(1+ s−p
2 )

,

for a constant c = c(n, ν, L , p, q, σ, s, �, r). The assumption s < S(σ ) allows us
to bound the exponent on the right-hand side as follows:

n2

n2 − 2(q − σ)
·
(

1 + s − p

2

)
<

n2

n2 − 2(q − σ)
·
(

1 + S(σ )− p

2

)

= n2

n2 − 2(q − σ)
· (n + 2)(n2 − 2(q − σ))

n3 + (n2 − 4)(q − σ)

= n2(n + 2)

n3 + (n2 − 4)(q − σ)
� n + 2

n
.

Since Mzo,� � 1 by definition, we can replace the exponent on the right-hand side
of the second last inequality by n+2

n . This gives

∫

Qr (zo)

|Du|s dz � c

(∫

Q�(zo)

|Du|σ dz + M�,zo

) n+2
n

and proves the claim of the lemma. ��
Remark 6.9. We note that the constant in the higher integrability estimate (6.10)
blows up, that is, c ↑ ∞, when σ ↑ q or s ↑ S(σ ) or r ↑ �. ��

6.4. Uniform Improvement of the Integrability Exponent

Our aim in this section is to ensure that Lemma 6.8 in fact yields a uniform
integrability improvement, in the sense that there exists a constant εo = εo(n, q −
p) > 0 such that

S(σ ) � σ + εo for any σ ∈ [p, q). (6.15)

The quantity S(σ )was defined in (6.9). We let δ := σ− p ∈ [0, q − p). We observe
that (6.15) is equivalent to

4n2 − 2n(n + 2)(q − p − δ)− δ
(
n3 + (n2 − 4)(q − p − δ)

)

� εo
(
n3 + (n2 − 4)(q − σ)

)
.

In the following we prove that there exists ε1 = ε1(n, q − p) > 0 such that

g(δ) :=4n2−2n(n+2)(q− p−δ)−δ(n3+(n2 − 4)(q− p−δ)) � ε1, (6.16)

for any δ ∈ [0, q − p). Once (6.16) has been established, (6.15) can be concluded
with εo = ε1/(2n3), since q − σ < 1. To prove (6.16) we distinguish between the
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cases n = 2, 3 and n � 4. If n ∈ {2, 3}, assumption (2.8) reads as q − p < 1 and
therefore ε := 1 − (q − p) > 0. We now set ε1 := 2n(n + 2)ε. Then we have

ε1 = 2n(n + 2)ε

� 2n(n + 2)ε + 2n2 − 4n + (n2 + 4n + 4 − n3)δ + (n2 − 4)(ε + δ)δ

= 4n2 − 2n(n + 2)(1 − ε − δ)− δ
(
n3 + (n2 − 4)(1 − ε − δ)

) = g(δ).

Here we used, in turn, the fact that 2n2−4n+(n2+4n+4−n3)δ � 0 for n ∈ {2, 3}
and δ ∈ [0, 1). This proves (6.16) with ε1 = 2n(n + 2)(1 − (q − p)).

Next we consider the case n � 4, where (2.8) turns into q − p < 4
n . We consider

the real valued function g defined in (6.16) for δ ∈ [0, q − p] and compute

g′(δ) = 2n(n + 2)− n3 − (n2 − 4)(q − p)+ 2(n2 − 4)δ.

Then, g′(δ) � g′(q − p) < 0 on [0, q − p], so that g is strictly decreasing. This
implies g(δ) > g(q − p) = 4n2 for any δ ∈ [0, q − p) and this establishes, as
above, (6.16) for the choice ε1 = 4n2. Note that this implies that (6.15) holds true
with the constant εo = n+2

n2 (1 − (q − p)) if n = 2, 3 (respectively εo = 2/n if
n � 4).

6.5. Iteration

In this section we iterate the higher integrability estimate from Lemma 6.8 in
order to obtain the local Lq -estimate for the gradient Du in terms of the local L p-
norm. This is possible, since the improvement in integrability in estimate (6.10)
from Lemma 6.8 is uniform, as we have shown in (6.15). The precise result is as
follows:

Proposition 6.10. Let 2 � p < q satisfy (2.8) and suppose that

u ∈ L p(0, T ; W 1,p(�,RN )
)∩Lq

loc

(
0, T ; W 1,q

loc (�,R
N )
) ∩ C0([0,T ];L2(�,RN )

)

is a weak solution of the parabolic system (2.7) where the structural conditions
(2.9) are in force. Then, there exists a constant χ = χ(n, q − p) > 1 such that, for
any cylinder Q R(zo) � �T , there holds

∫

Q R/2(zo)

|Du|q dz � c

(∫

Q R(zo)

|Du|p dz + Mzo,R

)χ
, (6.17)

where Mzo,R is defined in (6.11) and c = c(n, ν, L , p, q, R).

Proof. We consider a cylinder Q R(zo) � �T and define, for i ∈ {0, . . . , I }, radii
ri and integrability exponents σi by

ri := R

2
+ R

2i+1 and σi := p + i
q − p

I
,

where

I :=
⌈q − p

εo

⌉



252 Verena Bögelein, Frank Duzaar & Paolo Marcellini

and εo = εo(n, q − p) > 0 is the constant from (6.15). Then, p = σo < σ1 <

· · · < σI−1 < σI = q and, moreover, σi+1 < S(σi ) for any i ∈ {0 . . . , I − 1}.
Therefore, we can apply Lemma 6.8 and conclude that

∫

Qri+1 (zo)

|Du|σi+1 dz � c

(∫

Qri (zo)

|Du|σi dz + Mzo,R

) n+2
n

holds for any i ∈ {0 . . . , I − 1}. Here, we also used that Mzo,ri � Mzo,R . Joining
these estimates and taking into account that Mzo,R � 1, rI � R/2 and ro = R, we
find that
∫

Q R/2(zo)

|Du|q dz �
∫

QrI (zo)

|Du|q dz

� c

(∫

QrI−1 (zo)

|Du|σI−1 dz + Mzo,R

) n+2
n

� c

[(∫

QrI−2 (zo)

|Du|σI−2 dz + Mzo,R

) n+2
n + Mzo,R

] n+2
n

� c

(∫

QrI−2 (zo)

|Du|σI−2 dz + Mzo,R

)( n+2
n )2

� c

(∫

Q R(zo)

|Du|p dz + Mzo,R

)( n+2
n )I

.

This proves the asserted estimate (6.17) with χ = χ(n, q − p) = ( n+2
n

)I
> 1 and

a constant c depending on n, ν, L , p, q and R. ��

7. Proof of Theorems 2.6 and 2.8

Here, we start with the proof of the existence of weak solutions stated in The-
orem 2.6. This will be achieved by constructing an approximating sequence of
solutions to a regularized problem and then passing to the limit. The passage to the
limit will be achieved thanks to the Lq -bound from Proposition 6.10.

Proof of Theorem 2.6. We shall proceed in several steps.
Step 1. Regularization. For ε ∈ (0, 1] we define the regularized integrand fε by

fε(ξ) := f (ξ)+ ε|ξ |q for ξ ∈ R
Nn .

From the properties (2.9) of the integrand f we infer the following growth and
ellipticity properties for the regularized integrand fε:

⎧
⎨

⎩

ε|ξ |q + |ξ |p � fε(ξ) � (L + 1) (1 + |ξ |q) ,
|D2 fε(ξ)| � (L + q(q − 1))

(
1 + |ξ |q−2

)
,

〈D2 fε(ξ)η, η〉 � ν |ξ |p−2|η|2 + εq|ξ |q−2|η|2 ,
(7.1)
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whenever ξ, η ∈ R
Nn . In particular, for every fixed ε ∈ (0, 1], D fε satisfies stan-

dard q-growth conditions. Therefore, from the classical theory, see [20], we con-
clude the existence of a weak solution

uε ∈ Lq(0, T ; W 1,q(�,RN )
) ∩ C0([0, T ]; L2(�,RN )

)

to the parabolic Cauchy–Dirichlet problem
{
∂t uε − div

(
D fε(Duε)

) = 0 in �T ,

uε = g on ∂P�T .
(7.2)

Step 2. Uniform bounds and weak convergence. In the following, we want to pass
to the limit ε ↓ 0. We first recall some facts from the proof of Theorem 2.3 (note
that the parabolic system (7.2) coincides with (4.2)). Therefore, the solutions uε
satisfy the energy bounds (4.5) and (4.6). Moreover, they admit the weak continuity
property from (4.8). By the arguments of Section 4.5 we infer the existence of a
function

u ∈ L p(0, T ; W 1,p
g (�, R

N )
) ∩ Cw

([0, T ]; L2(�, R
N )
)
,

with u(·, 0) = g(·, 0) and a (not relabelled) subsequence, such that
⎧
⎨

⎩

uε ⇀ u weakly in L p(�T ,R
N ),

Duε ⇀ Du weakly in L p(�T ,R
Nn),

uε(·, t) ⇀ u(·, t) weakly in L2(�,RN )for any t ∈ [0, T ].
Next, we observe that Lemma 6.1 (more precisely, a version valid for the space-time
cylinder �T , cf. [12, Chapter I, Proposition 3.1]) yields

∫

�T

|uε| p(n+2)
n dz � c

∫

�T

(|Duε|p + |uε|p) dz

(
sup

t∈(0,T )

∫

�

|uε(·, t)|2 dx

) p
n

,

for a constant c = c(n, p, diam(�)). From (4.5) and (4.6) we know that the right-
hand side is uniformly bounded with respect to ε. Since q < p + 4

n � p + 2p
n =

p(n+2)
n by (2.8) and the assumption p � 2, the preceding inequality ensures that uε

is bounded in Lq(�T ,R
N ) uniformly with respect to ε. Moreover, since fε satisfies

(2.9) with L +q(q −1) instead of L , we are allowed to apply Proposition 6.10 to uε.
This yields the existence of constants χ = χ(n, q − p) and c = c(n, ν, L , p, q, R)
such that, for any cylinder Q R(zo) � �T , there holds

∫

Q R/2(zo)

|Duε|q dz � c

[
sup

t∈(to−R2,to)

∫

BR(xo)

|uε(·, t)|2 dx

+
∫

Q R(zo)

(
1 + |uε|p + |Duε|p) dz

]χ
. (7.3)

By (4.5) and (4.6) we therefore conclude that Duε is uniformly bounded in Lq
loc

(�T ,R
Nn). Together with the Lq -bound for uε from above, we conclude that
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u ∈ Lq
loc(0, T ; W 1,q

loc (�,R
N )) and that we can extract a further (not relabeled)

subsequence, such that

{
uε ⇀ u weakly in Lq(Qo,R

N ) for any Qo � �T .

Duε ⇀ Du weakly in Lq(Qo,R
Nn)for any Qo � �T .

(7.4)

At this point, we start again from the weak formulation of (7.2)1 with a general
testing function ϕ ∈ C∞

0 (�T ,R
N ). Using the bound |D fε(w)| � c(q)L(1 +

|w|q−1) (which follows from the convexity of fε and (7.1)1), Hölder’s inequality,
(7.3) and the energy bound (4.5), we obtain that
∣
∣
∣
∣

∫

�T

uε · ϕt dz

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�T

〈D fε(Duε), Dϕ〉 dz

∣
∣
∣
∣ � c

∫

�T

(1 + |Duε|)q−1|Dϕ| dz

� c

(∫

spt ϕ
(1 + |Duε|)q dz

) q−1
q ‖Dϕ‖Lq (�T ) � c ‖Dϕ‖Lq (�T ),

for a constant c depending only on L , q, | spt ϕ| and sup0<ε�1 ‖Duε‖Lq (spt ϕ). Since

ϕ ∈ C∞
0 (�T ,R

N )—and in particular spt ϕ � �T —was arbitrary, this shows that
∂t uε is uniformly bounded in Lq ′

(t1, t2; W −1,q ′
(O,RN )) for any 0 < t1 < t2 < T

and O � �. By the lower semicontinuity of the norm, this also implies that ut ∈
Lq ′
(t1, t2; W −1,q ′

(O,RN )). Finally, the embedding

{
v ∈ Lq(t1, t2; W 1,q(O,RN )

) : vt ∈ Lq ′(
t1, t2; W −1,q ′

(O,RN )
)}

↪→ C0([t1, t2]; L2(O,RN )
)

guarantees that u ∈ C0([t1, t2]; L2(O,RN )).
Step 3. Strong convergence. Due to (4.5) and (4.8) we can, on the one hand, apply
[32, Theorem 6] with

(X, B,Y, p, q) = (
W 1,p(�,RN ), L2(�,RN ),W −�,2(�,RN ), 2,∞)

to conclude that (uε) is relatively compact in L2(�T ,R
N ) and, on the other hand,

we can apply [32, Theorem 5] with

(X, B,Y, p) = (
W 1,q(O,RN ), L p(O,RN ),W −�,2(O,RN ), q

)
,

yielding that (uε) is relatively compact in L p(O×(t1, t2),RN ) for any O×(t1, t2) �
�T . Together, we infer the existence of a further, still not relabeled, subsequence
such that

uε → u strongly in L2(�T ,R
N ) and Lq(Qo,R

N ) for any Qo � �T . (7.5)

In the following we will use this result to show that we, indeed, have strong con-
vergence of Duε in L p

loc(�T ,R
N ), that is, that

Duε → Du strongly in L p(Qo,R
Nn) for anyQo � �T (7.6)
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and, further, that

uε(·, t) → u(·, t) strongly in L2(O,RN ) for any O � � and any t ∈ (t1, t2).

(7.7)

For this aim we consider Q ≡ O×(t1, t2) � �T with O � � and 0 < t1 < t2 < T
and ϕ ∈ C∞

0 (�T ,R
N ) with spt ϕ ⊂ Q. From the weak form of (7.2)1 we infer

that
∫

Q

[
(uε − u) · ϕt − 〈D fε(Duε)− D f (Du), Dϕ〉] dz

=
∫

Q
〈D f (Du), Dϕ〉 dz +

∫ t2

t1
〈ut , ϕ〉W 1,q (O,RN ) dt. (7.8)

Since ut ∈ Lq ′
(t1, t2; W −1,q ′

(O,RN )), the last integral on the right-hand side is
finite. In this identity we now formally choose the testing functionϕ = χθψ(uε−u),
where ψ ∈ C∞

0 (�T , [0, 1]) has support sptψ ⊂ Q and χθ is defined according
to (6.6) with some τ ∈ (0, T ) and θ ∈ (0, τ ). Note that this choice of testing
function can be made rigorous by an approximation argument. For the first term on
the left-hand side of (7.8) we obtain in the limit θ ↓ 0 that there holds:
∫

Q
(uε − u) · ϕt dz = 1

2

∫

Q
|uε − u|2∂t (χθψ) dz

= − 1
2θ

∫ τ

τ−θ

∫

�

|uε − u|2ψ dz + 1

2

∫

Q
|uε − u|2χθ∂tψ dz

→ − 1
2

∫

O
|(uε − u)(·, τ )|2ψ dx + 1

2

∫

Qτ

|uε − u|2∂tψ dz.

Here, we have abbreviated Qτ := O× (t1, τ ). Therefore, passing to the limit θ ↓ 0
in (7.8) we get

1
2

∫

O
|(uε − u)(·, τ )|2ψ dx +

∫

Qτ

〈D fε(Duε)− D f (Du), Dϕε〉 dz

= 1
2

∫

Qτ

|uε − u|2∂tψ dz−
∫

Qτ

〈D f (Du), Dϕε〉 dz−
∫ τ

t1
〈ut , ϕε〉W 1,q (O,RN ) dt

=: Iε + IIε + IIIε, (7.9)

where we have set, for short, ϕε := ψ(uε − u). Next, we decompose the second
term on the left-hand side of (7.9) as follows:

∫

Qτ

〈D fε(Duε)− D f (Du), Dϕε〉 dz

=
∫

Qτ

〈D f (Duε)− D f (Du), Duε − Du〉ψ dz (=: IV(1)ε )

+
∫

Qτ

〈D f (Duε)− D f (Du), Dψ ⊗ (uε − u)〉 dz (=: IV(2)ε )

+ ε q
∫

Qτ

|Duε|q−2 Duε · Dϕε dz (=: IV(3)ε ).
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For the first term we use (7.1)3 and Lemma 3.3 to derive the following lower bound:

IV(1)ε =
∫

Qτ

∫ 1

0

〈
D2 f

(
Du + s(Duε − Du)

)
(Duε − Du), Duε − Du

〉
ψ ds dz

� ν

∫

Qτ

∫ 1

0
|Du + s(Duε − Du)|p−2|Duε − Du|2ψ ds dz

� ν
c(p)

∫

Qτ

(|Du|2 + |Duε − Du|2) p−2
2 |Duε − Du|2ψ dz.

Combining this inequality with (7.9) we get

1
2

∫

O
|(uε − u)(·, τ )|2ψ dx + ν

c(p)

∫

Qτ

(|Du|2 + |Duε − Du|2) p−2
2

|Duε − Du|2ψ dz � |Iε| + |IIε| + |IIIε| + |IV(2)ε | + |IV(3)ε |. (7.10)

In the following we will show that the terms on the right-hand side of (7.10)
converge to zero in the limit ε ↓ 0. For the first term this is a consequence of (7.5),
that is, we have |Iε| → 0 as ε ↓ 0. For the term IV(2)ε we obtain, with the help of
|D f (ξ)| � c(q)L(1+|ξ |q−1), the uniform Lq -bound for Duε on Q and the strong
convergence uε → u in Lq(Q,RN ) from (7.5), that

|IV(2)ε | � c(q) L
∫

Q

[
(|Duε| + 1)q−1 + (|Du| + 1)q−1]|Dψ ||uε − u| dz

� c(q) L‖Dψ‖L∞
(∫

Q

(|Duε|q + |Du|q + 1
)

dz

) q−1
q
(∫

Q
|uε − u|q dz

) 1
q

→ 0 as ε ↓ 0.

By the uniform boundedness of uε and Duε in Lq(Q), we get for the term IV(3)ε
that

|IV(3)ε | � ε q
∫

Q
|Duε|q−1(|Duε − Du|ψ + |uε − u||Dψ |) dz

� c(q)ε
(‖ψ‖L∞ + ‖Dψ‖L∞

) ∫

Qto

(|Duε|q + |Du|q + |uε − u|q) dz

→ 0 as ε ↓ 0.

Finally, from (7.4) we obtain that ϕε ⇀ 0 weakly in Lq(t1, t2; W 1,q(O,RN )).
Since D f (Du) ∈ Lq ′

(Q,RNn) and ut ∈ Lq ′
(t1, t2; W −1,q ′

(O,RN )), this also
implies that |IIε| and |IIIε| converge to zero in the limit ε ↓ 0. Altogether, we have
shown that

lim
ε↓0

[
1
2

∫

O
|(uε − u)(·, τ )|2ψ dx

+
∫

Q

(|Du|2 + |Duε − Du|2) p−2
2 |Duε − Du|2ψ dz

]
= 0. (7.11)
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Since sptψ ⊂ Q � �T and τ ∈ (t1, t2) are arbitrary, this already implies claims
(7.6) and (7.7).
Step 4. Passage to the limit. It only remains to establish that u is a weak solution to
(2.7). Starting from the weak form of (7.2)2, that is, from

∫

�T

uε · ϕt − 〈D fε(Duε), Dϕ〉 dz = 0 ∀ϕ ∈ C∞
0 (�T ,R

N ),

we use (7.5) and (7.6) to pass to the limit ε ↓ 0. We conclude that
∫

�T

u · ϕt − 〈D f (Du), Dϕ〉 dz = 0 ∀ϕ ∈ C∞
0 (�T ,R

N )

holds true. Moreover, for any cylinder Q R(zo) � �T we have Duε → Du almost
everywhere on Q R(zo), which, together with (7.5), (7.3), (7.6) and (7.7), shows
that
∫

Q R/2(zo)

|Du|q dz

= lim
ε↓0

∫

Q R/2(zo)

|Duε|q dz

� c

[
sup

t∈(to−R2,to)

∫

BR(xo)

|uε(·, t)|2 dx +
∫

Q R(zo)

(|Duε|p + |uε|p + 1
)

dz

]χ

= c

[
sup

t∈(to−R2,to)

∫

BR(xo)

|u(·, t)|2 dx +
∫

Q R(zo)

(|Du|p + |u|p + 1
)

dz

]χ
.

This completes the proof of Theorem 2.6. ��
Finally, we prove the regularity result for variational solutions from Theorem

2.8.

Proof of Theorem 2.8. Let u be a variational solution to (2.1) under the assump-
tions (2.6), (2.8) and (2.9). Firstly, we observe that the assumptions of Theorem 2.6
are satisfied and, therefore, there exists a weak solution

ũ ∈ L p(0, T ; W 1,p
g (�,RN )

)∩Lq
loc

(
0, T ; W 1,q

loc (�,R
N )
)∩ Cw

([0, T ];L2(�,RN )
)

of the parabolic Cauchy–Dirichlet problem (2.1) satisfying (2.10). By the argument
from Section 4.4, we infer that ũ is also a variational solution to (2.1). Therefore, the
uniqueness result from Theorem 2.4 ensures that ũ = u, and hence the variational
solution u is indeed a weak solution satisfying the desired properties. ��

Appendix A: A Compactness Result

For the sake of completeness we state and prove in Theorem A.2, below, a
probably not so well known compactness result from [17] which we used in the last
step of the proof of Theorem 2.3. The argument is based on the following result
from [34, Theorem 2.1].
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Theorem A.1. Any function u ∈ L∞(0, T ; L2(�,RN )) ∩ Cw([0, T ]; W −�,2
(�,RN )), with � ∈ N, is weakly continuous as a mapping [0, T ] � t �→ u(·, t) ∈
L2(�,RN ); this means that u ∈ Cw([0, T ]; L2(�,RN )). Moreover, there holds

‖u(·, t)‖L2(�) � ‖u‖L∞(0,T ;L2(�)) for any t ∈ [0, T ].
The previous theorem can be used to establish the following compactness result.

Theorem A.2. Let � ∈ N. Suppose that

(ui )i∈N ⊂ L∞(
0, T ; L2(�,RN )

) ∩ C0([0, T ]; W −�,2(�,RN )
)

is a sequence of maps satisfying

(i) (ui )i∈N is bounded in L∞(0, T ; L2(�,RN )), and moreover
(ii) ‖ui (·, t2)−ui (·, t1)‖W−�,2(�) � ω(|t2−t1|) for any i ∈ N and t1, t2 ∈ [0, T ] for

some non-decreasing modulusω : [0, T ] → R+ with lims↓0 ω(s) = 0 = ω(0).

Then, there exists a function u ∈ Cw([0, T ]; L2(�,RN ))and a (non-relabelled)
subsequence (ui )i∈N such that ui (·, t) ⇀ u(·, t) weakly in L2(�,RN ) in the limit
i → ∞ for any t ∈ [0, T ].
Proof. Due to hypotheses (i) and (ii) we can apply the compactness result [32,
Theorem 5] to the sequence (ui )i∈N with p = ∞, B = W −�,2(�,RN ) and X =
L2(�,RN ) to infer the existence of a function u ∈ C0([0, T ]; W −�,2(�,RN ))

and a subsequence—still denoted by (ui )i∈N—such that ui → u strongly in
C0([0, T ]; W −�,2(�,RN )). Further, by (i) we are allowed to pass to another
subsequence—still denoted by ui —so that ui ⇀

∗ u weakly∗ in L∞(0, T ; L2

(�,RN )). At this stage we apply Theorem A.1 and conclude that u, ui ∈ Cw([0, T ];
L2(�,RN )) for any i ∈ N. Moreover, for any t ∈ [0, T ] we have

sup
i∈N

‖ui (·, t)‖L2(�) � sup
i∈N

‖ui‖L∞(0,T ;L2(�)) =: M < ∞ (A.1)

and

‖u(·, t)‖L2(�) � ‖u‖L∞(0,T ;L2(�)) � M, (A.2)

where we used the lower semicontinuity of ‖ ·‖L∞(0,T ;L2(�)) with respect to weak∗
convergence.

Next, we consider t ∈ [0, T ], ψ ∈ L2(�,RN ) and δ > 0. Since W �,2(�,RN )

is dense in L2(�,RN ), there existsψδ ∈ W �,2(�,RN ) such that ‖ψ−ψδ‖L2(�) �
δ. Using (A.1) and (A.2), we find that
∣
∣
∣
∣

∫

�

(
ui (·, t)− u(·, t)

)
ψ dx

∣
∣
∣
∣

�
∣
∣
∣
∣

∫

�

(
ui (·, t)− u(·, t)

)(
ψ − ψδ

)
dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�

(
ui (·, t)− u(·, t)

)
ψδ dx

∣
∣
∣
∣

� δ
(‖ui (·, t)‖L2(�) + ‖u(·, t)‖L2(�)

)+ ‖ui (·, t)−u(·, t)‖W−�,2(�)‖ψδ‖W �,2(�)

� 2δM + ‖ui (·, t)− u(·, t)‖W−�,2(�)‖ψδ‖W �,2(�).
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In order to pass to the limit i → ∞ on the right-hand side we recall that ui converges
to u strongly in u ∈ C0([0, T ]; W −�,2(�,RN )). This implies that the second term
on the right-hand side of the preceding inequality vanishes in the limit i → ∞. But
this implies

lim sup
i→∞

∣
∣
∣
∣

∫

�

(
ui (·, t)− u(·, t)

)
ψ dx

∣
∣
∣
∣ � 2δM.

Since δ > 0 was arbitrary, we can pass in this inequality to the limit δ ↓ 0, yielding
that

lim
i→∞

∫

�

(
ui (·, t)− u(·, t)

)
ψ dx = 0

holds whenever ψ ∈ L2(�,RN ), that is, ui (·, t) ⇀ u(·, t) weakly in L2(�,RN ).
Since t ∈ [0, T ] is arbitrary, we have proved the desired weak convergence for any
t ∈ [0, T ]. This finishes the proof of the theorem. ��

Appendix B: Mollification in Time

Here, we will provide the basic properties of the mollification in time [·]h defined
in (5.1). The following lemma, which considers the mollification in a more general
setting, will be useful later.

Lemma B.1. Let X be a Banach space and assume that vo ∈ X and, moreover,
v ∈ Lr (0, T ; X) for some 1 � r � ∞. Then, the mollification in time defined by

[v]h(t) := e− t
h vo + 1

h

∫ t

0
e

s−t
h v(s) ds, (B.1)

for h ∈ (0, T ] and t ∈ [0, T ] belongs to Lr (0, T ; X) and

‖[v]h‖Lr (0,to;X) � ‖v‖Lr (0,to;X) +
[

h
r

(
1 − e− tor

h
)] 1

r ‖vo‖X (B.2)

for any to ∈ (0, T ]. Moreover, we have ∂t [v]h ∈ Lr (0, T ; X) and

∂t [v]h = − 1
h

([v]h − v
)
.

Proof. For t ∈ (0, T ) we decompose

‖[v]h(t)‖X � e− t
h ‖vo‖X + 1

h

∫ t

0
e

s−t
h ‖v(s)‖X ds =: Ih(·, t)+ IIh(·, t),

with the obvious meaning of Ih and IIh . For t ∈ (0, T ) and r > 1, Hölder’s
inequality implies for the term IIh that there holds:
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IIh(t) =
∫ t

0

(
1
h e

s−t
h

) 1
r ′ ( 1

h e
s−t

h

) 1
r ‖v(s)‖X ds

�
(∫ t

0

1
h e

s−t
h ds

) 1
r ′ (∫ t

0

1
h e

s−t
h ‖v(s)‖r

X ds

) 1
r

= (
1 − e− t

h
) 1

r ′
(∫ t

0

1
h e

s−t
h ‖v(s)‖r

X ds

) 1
r

�
(∫ t

0

1
h e

s−t
h ‖v(s)‖r

X ds

) 1
r

.

For the case r = 1 the last inequality trivially holds. We take this to the power r
and integrate over (0, to), where to ∈ (0, T ]. By Fubini’s theorem we obtain

∫ to

0
‖IIh(t)‖r

X dt �
∫ to

0

∫ t

0

1
h e

s−t
h ‖v(s)‖r

X ds dt

=
∫ to

0

∫ to

s

1
h e

s−t
h dt ‖v(s)‖r

X ds

=
∫ to

0

(
1 − e

s−T
h

)
‖v(s)‖r

X ds �
∫ to

0
‖v(s)‖r

X ds.

The first term is treated as follows:
∫ to

0
‖Ih(t)‖r

X dz � ‖vo‖r
X

∫ to

0
e− tr

h dt = h
r

(
1 − e− tor

h

)
‖vo‖r

X .

Combining the previous estimates, we have shown

‖[v]h‖Lr (0,to;X) � ‖v∥∥Lr (0,to;X) +
[

h
r

(
1 − e− tor

h
)] 1

r ‖vo‖X ,

whenever to ∈ (0, T ]. This proves [v]h ∈ Lr (0, T ; X) together with the Lr -
estimate. In order to prove the assertion concerning the time derivative of [v]h we
perform a direct computation of ∂t [v]h , which yields for almost every t ∈ (0, T )
that

∂t [v]h(t) = d

dt

[
e− t

h v(0)+ e− t
h

h

∫ t

0
e

s
h v(s) ds

]

= −e− t
h

h
v(0)− e− t

h

h2

∫ t

0
e

s
h v(s) ds + 1

h v(t)

= − 1
h

([v]h(t)− v(t)
)

holds true. We note that for this computation it suffices to have v ∈ L1(0, T ; X)
and v(0) ∈ X . Since we have already shown that the right-hand side belongs to
Lr (0, T ; X), we conclude that ∂t [v]h ∈ Lr (0, T ; X). This finishes the proof of the
lemma. ��

The following lemma provides the basic properties of the mollification [·]h in
Sobolev spaces.
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Lemma B.2. Suppose that vo ∈ L1(�,RN ) and, moreover, v ∈ L1(0, T ; L1

(�,RN )) = L1(�T ,R
N ). Then, the mollification [v]h defined in (5.1) admits

the following properties:

(i) If v ∈ L p(�T ,R
N ) and vo ∈ L p(�,RN ) with p � 1, then also [v]h ∈

L p(�T ,R
N ), and the following quantitative estimate holds true:

‖[v]h‖L p(�T ) � ‖v‖L p(�T ) + h
1
p ‖vo‖L p(�).

Moreover, [v]h → v in L p(�T ,R
N ) as h ↓ 0.

(ii) If v ∈ L p(0, T ; W 1,p(�,RN )) and vo ∈ W 1,p(�,RN ) with p � 1, then
also [v]h ∈ L p(0, T ; W 1,p(�,RN )), and the following quantitative estimate
holds true:

‖[v]h‖L p(0,T ;W 1,p(�)) � ‖v‖L p(0,T ;W 1,p(�)) + h
1
p ‖vo‖W 1,p(�).

Moreover, [v]h → v in L p(0, T ; W 1,p(�,RN )) as h ↓ 0.
(iii) Ifv ∈ L∞(0, T ; L2(�,RN ))andvo ∈ L2(�,RN ), then [v]h ∈ C0([0, T ]; L2

(�,RN )) and [v]h → v in L2(�T ,R
N ) as h ↓ 0; in particular, there holds

[v]h(·, 0) = vo.
(iv) If v ∈ L∞(0, T ; L2(�,RN )) and vo ∈ L2(�,RN ), then also ∂t [v]h ∈

L∞(0, T ; L2(�,RN )). Moreover, we have

∂t [v]h = − 1
h

([v]h − v
)
.

(v) If v ∈ L p(0, T ; W 1,p
0 (�,RN )) and vo ∈ W 1,p

0 (�,RN ), then [v]h ∈ L p(0, T ;
W 1,p

0 (�,RN )).

Proof. We start with the proof of (i). The assertion [v]h ∈ L p(�T ,R
N ) and the

L p-bound for [v]h directly follow by an application of Lemma B.1 with the choice
r = p and X = L p(�,RN ).

It remains to establish [v]h → v in L p(�T ,R
N ) as h ↓ 0. For this we ap-

proximate v ∈ L p(�T ,R
N ) by continuous functions ṽ with compact support

spt ṽ � �T ; more precisely, for given ε > 0 we find ṽ ∈ C0(�T ,R
N ) with

spt ṽ � �T and ‖v − ṽ‖L p(�T ) � ε. We construct [ṽ]h according to (5.1) with v
replaced by ṽ and observe that the difference

[v]h − [ṽ]h = 1

h

∫ t

0
e

s−t
h
(
v(·, s)− ṽ(·, s)

)
ds

equals [v − ṽ]h as defined in (B.1) with initial datum vo ≡ 0. Therefore, using
estimate (B.2) from Lemma B.1 with v− ṽ instead of v, vo = 0, X = L p(�,RN )

and to = T , we get

‖[v]h − [ṽ]h‖L p(�T ) � ‖v − ṽ‖L p(�T ) � ε,

and therefore

‖[v]h − v‖L p(�T ) � ‖[v]h − [ṽ]h‖L p(�T ) + ‖[ṽ]h − ṽ‖L p(�T ) + ‖ṽ − v‖L p(�T )

� 2 ε + ‖[ṽ]h − ṽ‖L p(�T ).
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At this stage it remains to show that [ṽ]h → ṽ in L p(�T ,R
N ) as h ↓ 0 for

ṽ ∈ C0(�T ) with spt ṽ � �T ; this can be inferred as follows: Taking into account
that

1

h(1−e− t
h )

∫ t

0
e

s−t
h ds = 1,

we first rewrite ṽ(·, t)− [ṽ]h(·, t) and obtain for t ∈ (0, T ) that

[ṽ]h(·, t)− ṽ(·, t) = e− t
h (vo − ṽ(·, t))+ 1

h

∫ t

0
e

s−t
h
(
ṽ(·, s)− ṽ(·, t)

)
ds. (B.3)

Since spt ṽ � �T , we find 0 < δo < T such that ṽ(·, t) = 0 whenever 0 � t � δo.
We now estimate the L p(�T )-norm of both terms appearing on the right-hand side
of the last identity separately. For the first one we observe that for 0 < t � δo it
simplifies to e− t

h vo. This yields
∫ T

0

∫

�

|e− t
h (vo − ṽ(·, t))|p dx dt

=
∫ δ0

0

∫

�

|e− t
h vo|p dx dt +

∫ T

δ0

∫

�

|e− t
h (vo − ṽ(·, t))|p dx dt

� h
∫

�

|vo|p dx + e− pδo
h

∫ T

δ0

∫

�

|vo − ṽ(·, t)|p dx dt

� h
∫

�

|vo|p dx + e− pδo
h
[
T ‖vo‖L p(�) + ‖ṽ‖L p(�T )

]p
.

Next, we observe that the second term on the right-hand side of (B.3) vanishes if
0 < t � δo. Moreover, since ṽ is uniformly continuous we know that for any ε > 0
there exists δ(ε) ∈ (0, δo] such that |ṽ(x, t) − ṽ(x, s)| � ε whenever x ∈ � and
|t − s| � δ. Using this in the estimate of the second term, we find

∫ T

0

∫

�

∣
∣
∣
∣

1
h

∫ t

0
e

s−t
h
(
ṽ(·, s)− ṽ(·, t)

)
ds

∣
∣
∣
∣

p

dx dt

=
∫ T

δo

∫

�

∣
∣
∣
∣

1
h

∫ t

0
e

s−t
h
(
ṽ(·, s)− ṽ(·, t)

)
ds

∣
∣
∣
∣

p

dx dt

=
∫ T

δo

∫

�

∣
∣
∣
∣

1
h

∫ t−δ

0
e

s−t
h
(
ṽ(·, t)− ṽ(·, s)

)
ds

+ 1
h

∫ t

t−δ
e

s−t
h
(
ṽ(·, t)− ṽ(·, s)

)
ds

∣
∣
∣
∣

p

dx dt

� T |�|[2e− δ
h ‖ṽ‖L∞(�T ) + ε

]p
.

Combing the previous estimates, we infer that
∫ T

0

∫

�

∣
∣[ṽ]h(x, t)− ṽ(x, t)

∣
∣p dx dt

� h‖vo‖p
L p(�) + e− pδo

h
[
T ‖vo‖L p(�) + ‖ṽ‖L p(�T )

]p

+T |�|[2e− δ
h ‖ṽ‖L∞(�T ) + ε

]p
.
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Here, we first let ε ↓ 0 (which is possible, since ε > 0 was arbitrary) and then h ↓ 0.
The right-hand side then converges to 0, proving that [ṽ]h → ṽ in L p(�T ,R

N ) as
h ↓ 0. Altogether, we have shown the desired L p-convergence and this finishes the
proof of (i).

The proof of (ii) is an easy consequence of (i), since

D[v]h(·, t) = e− t
h Dvo(·)+ 1

h

∫ t

0
e

s−t
h Dv(·, s) ds.

Now, by (i), the assumptions Dv ∈ L p(�T ) and Dvo ∈ L p(�) guarantee that
[Dv]h ∈ L p(�T ) and [Dv]h → Dv in L p(�T ). Therefore, we have [v]h ∈
L p(0, T ; W 1,p(�)) and [v]h → v in L p(0, T ; W 1,p(�)). The bound for the
L p−W 1,p norm of [v]h follows immediately from the estimate in (i) applied to
Dv.

Now we come to the proof of (iii). The assertion that [v]h → v in L2(�T ) is
a consequence of (i), since L∞(0, T ; L2(�)) ⊂ L2(�T ). Therefore, we only have
to establish the continuity of [v]h with respect to time. For 0 � t1 < t2 � T we
rewrite the difference of [v]h(·, t) at t = t2 and t = t1 as follows:

[v]h(·, t2)− [v]h(·, t1)

=
(

e− t2
h − e− t1

h

)[
vo + 1

h

∫ t1

0
e

s
h v(·, s) ds

]
+ e− t2

h 1
h

∫ t2

t1
e

s
h v(·, s) ds.

For the estimate of the right-hand side terms we use the following elementary in-
equality with suitable choices of τ1 and τ2. This inequality follows by an application
of the Cauchy–Schwarz inequality:
∣
∣
∣
∣

∫ τ2

τ1

e
s
h v(·, s) ds

∣
∣
∣
∣

2

�
∫
τ2
τ1

e
2s
h ds

∫
τ2
τ1
v(·, s)2 ds = h

2

(
e

2τ2
h − e

2τ1
h

)∫
τ2
τ1
v2(·, s) ds.

We apply the preceding inequality with the choices (τ1, τ2) = (0, t1) (respectively
(t1, t2)) and obtain

∥
∥[v]h(·, t2)− [v]h(·, t1)

∥
∥2

L2(�)

� 3
(

e− t2
h − e− t1

h

)2‖vo‖2
L2(�)

+ 3
2h

(
1 − e

2(t1−t2)
h

) ∫ t2

t1

∫

�

v2(x, t) dx ds

+ 3
2h

(
1 − e− 2t1

h

)(
1 − e

2(t1−t2)
h

) ∫ t1

0

∫

�

v2(x, t) dx ds

� 3
(

e− t2
h − e− t1

h

)2‖uo‖2
L2(�)

+ 3
2h

(
1 − e

2(t1−t2)
h

)
‖v‖2

L2(�T )
.

Therefore, the right-hand side converges to 0 whenever t2 − t1 → 0 and this yields
the first assertion in (iii). By the same reasoning we infer that
∫

�

|[v]h(x, t)− vo|2 dx � 2
(
1 − e− t

h
)2
∫

�

|vo|2 dx + 2
∫

�

∫ t

0
|v(x, s)|2 ds dx,

and, as this implies, that [v]h(·, t) → vo as t ↓ 0.
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Proof of (iv): Claim (iv) directly follows from Lemma B.1 applied with r = 2
and X = L2(�,RN ).

Finally, the proof of proof of (v) is standard (compare the analogous result for
Steklov-averages). ��

To treat terms involving the time derivative of v or [v]h , we need to define what
is meant by ∂tv ∈ L p′

(0, T ; W −1,p′
(�)) for a function v ∈ L p(0, T ; W 1,p(�))

with p > 2n
n+2 . The reason we restrict our consideration to this values of p comes

from the fact that we have the following inclusions

W 1,p(�) ↪→ L2(�) ∼= (L2(�))′ ↪→ W −1,p′
(�),

with continuous injections. This allows us to interpret the mapping t �→ v(·, t) ∈
W 1,p(�) as map from (0, T ) into W −1,p′

(�), that is, a curve in W −1,p′
(�). If we

denote the embedding from W 1,p to W −1,p′
by J, we easily see that

∫ T

0
‖J(v(t))‖p

W−1,p′ dt � c
∫ T

0
‖v(t)‖p

W 1,p dt = c ‖v‖p
L p(0,T ;W 1,p(�))

.

In particular v ∈ L1(0, T ; W −1,p′
(�)), more precisely, the map t �→ J(v(·, t)) is

in this space. In the following, we use the shorthand notion v(t) instead of J(v(t)).
Now, we let X be a Banach space with norm ‖ · ‖X .
In the space L1(0, T ; X) it is possible to define the weak time derivative ∂tv(t)

of v(t) as follows: w ∈ L1(0, T ; X) is called a weak time derivative if there holds:
∫ T

0
w(t)ψ(t) dt = −

∫ T

0
v(t)ψ ′(t) dt ∀ ψ ∈ C∞

0 (0, T ).

In case such a w exists, we write ∂tv ≡ w. Finally, we say that v(t) ∈ Lr (0, T ; X)
has a weak time derivative ∂tv ∈ Lr (0, T ; X) if the preceding identity holds and,
moreover,

∫ T

0
‖∂tv(t)‖r

X dt < ∞,

that is, ∂tv ∈ Lr (0, T ; X).
We apply this with X = W −1,p′

(�) and r = p′. This makes it clear what is
meant when we say v ∈ L p(0, T ; W 1,p(�)) admits a distributional time derivative
∂tv ∈ L p′

(0, T ; W −1,p′
(�)).

The next Lemma is concerned with the time derivative of the mollification [v]h .

Lemma B.3. Let X be a Banach space. Assume that v ∈ Lr (0, T ; X) with ∂tv ∈
Lr (0, T ; X) (note that this implies v ∈ C0,r ′

([0, T ]; X) where r ′ := r
r−1 when

r > 1 and v ∈ C0([0, T ]; X) when r = 1; in particular, v(0) ∈ X). Then, for the
mollification in time defined by

[v]h(t) := e− t
h v(0)+ 1

h

∫ T

0
e

s−t
h v(s) ds,
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the time derivative ∂t [v]h can be computed by

∂t [v]h(t) = 1
h

∫ t

0
e

s−t
h ∂sv(s) ds

and, moreover, its Lr (0, T ; X)-norm is bounded independently of h by the Lr

(0, T ; X)-norm of ∂tv, that is, we have

‖∂t [v]h‖Lr (0,T ;X) � ‖∂tv‖Lr (0,T ;X).

Proof. From Lemma B.1 we know that ∂t [v]h ∈ Lr (0, T ; X) and for almost every
t ∈ (0, T ) we have that

∂t [v]h(t) = − 1
h

([v]h(t)− v(t)
) = 1

h

(
v(t)− e− t

h v(0)− e− t
h

h

∫ t

0
e

s
h v(s) ds

)
.

Now, using the assumption ∂tv ∈ Lr (0, T ; X)—which in particular implies v ∈
C0,r ′

([0, T ]; X)—we may continue the preceding computation as follows:

∂t [v]h(t) = 1
h

(
v(t)− e− t

h v(0)− e− t
h

∫ t

0

d

ds
e

s
h v(s) ds

)

= 1
h

(
v(t)− e− t

h v(0)− v(t)+ e− t
h v(0)+ e− t

h

∫ t

0
e

s
h ∂sv(s) ds

)

= 1
h

∫ t

0
e

s−t
h ∂sv(s) ds.

This proves the first assertion of the lemma. Applying Lemma B.1 with (vo, v)

replaced by (0, ∂sv) in the right-hand side we conclude that

‖∂t [v]h‖Lr (0,T ;X) =
∥
∥
∥
∥

1
h

∫ t

0
e

s−t
h ∂sv(s) ds

∥
∥
∥
∥

Lr (0,T ;X)
� ‖∂tv‖Lr (0,T ;X).

This proves the asserted Lr (0, T ; X)-estimate for the time derivative and finishes
the proof of the Lemma. ��

References

1. Acerbi, E., Mingione, G., Seregin, G.A.: Regularity results for parabolic systems
related to a class of non-newtonian fluids. Ann. Inst. Henri Poincaré Anal. Non Linéaire,
21(1), 25–60 (2004)

2. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case
1 < p < 2. J. Math. Anal. Appl. 140(1), 115–135 (1989)

3. Adams, R.A.: Sobolev Spaces. In: Pure and Applied Mathematics, vol. 65. Academic
Press, New York, 1975

4. Bögelein, V., Duzaar, F.: Higher integrability for parabolic systems with non-standard
growth and degenerate diffusions, Publ. Math. 55(1), 201–250 (2011)

5. Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic equations with p, q-growth.
J. Math. Pures Appl. (2013). doi:10.1016/j.matpur.2013.01.012

6. Bögelein, V., Duzaar, F., Mingione, G.: Degenerate problems with irregular obsta-
cles, J. Reine Angew. Math. 650, 107–160 (2011)

http://dx.doi.org/10.1016/j.matpur.2013.01.012


266 Verena Bögelein, Frank Duzaar & Paolo Marcellini

7. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in frac-
tional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001)

8. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Higher differentiability of
minimizers of convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire
28(3), 395–411 (2011)

9. Cupini, G., Fusco, N., Petti, R.: Hölder continuity of local minimizers. J. Math. Anal.
Appl. 235(2), 578–597 (1999)

10. Cupini, G., Marcellini, P., Mascolo, E.: Regularity under sharp anisotropic general
growth conditions. Discr. Contin. Dyn. Syst. Ser. B 11, 66–86 (2009)

11. Cupini, G., Marcellini, P., Mascolo, E.: Local boundedness of solutions to quasilin-
ear elliptic systems. Manuscripta Math. 137, 287–315 (2012)

12. DiBenedetto, E.: Degenerate parabolic equations. Springer-Verlag, Universitytext xv,
387, New York, NY, 1993

13. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional
Sobolev spaces. Bull. Sci. Math.136(5), 521–573 (2012)

14. Duzaar, F., Mingione, G., Steffen, K.: Parabolic systems with polynomial growth
and regularity. Mem. Am. Math. Soc. 214, 1005 (2011)

15. Esposito, L., Leonetti, F., Mingione, G.: Higher integrability for minimizers of in-
tegral functionals with p, q growth. J. Differ. Equ. 157(2), 414–438 (1999)

16. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing
Company, Tuck Link, Singapore, 2003

17. Lichnewsky, A., Temam, R.: Pseudosolutions of the time-dependent minimal surface
problem. J. Differ. Equ., 30(3), 340–364 (1978)

18. Lieberman, G.M.: Gradient estimates for a new class of degenerate elliptic and par-
abolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21(4), 497–522 (1994)

19. Lieberman, G.M.: Gradient estimates for anisotropic elliptic equations. Adv. Differ.
Equ. 10(7), 767–812 (2005)

20. Lions, J.L.: Quelques méthodes de résolution des problémes aux limites non linéaires.
Dunod, Paris, 1969

21. Machihara, S., Ozawa, T.: Interpolation inequalities in Besov spaces. Proc. Am. Math.
Soc. 131(5), 1553–1556 (2003)

22. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with
nonstandard growth conditions. Arch. Rational Mech. Analysis 105(3), 267–284 (1989)

23. Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-
growth conditions. J. Differ. Equ. 90(1), 1–30 (1991)

24. Marcellini, P.: Regularity for elliptic equations with general growth conditions.
J. Differ. Equ. 105, 296–333 (1993)

25. Marcellini, P.: Everywhere regularity for a class of elliptic systems without growth
conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1), 1–25 (1996)

26. Marcellini, P., Papi, G.: Nonlinear elliptic systems with general growth. J. Differ. Equ.
221, 412–443 (2006)

27. Mashiyev, R.A., Buhrii, O.M.: Existence of solutions of the parabolic variational
inequality with variable exponent of nonlinearity. J. Math. Anal. Appl. 377(2), 450–463
(2011)

28. Naumann, J.: Einführung in die Theorie parabolischer Variationsungleichungen. Teub-
ner Verlagsgesellschaft, Leipzig, 1984

29. Schmidt, T.: Regularity theorems for degenerate quasiconvex energies with p, q-
growth. Adv. Calc. Var. 1(3), 241–270 (2008)

30. Schmidt, T.: Regularity of relaxed minimizers of quasiconvex variational integrals with
p, q-growth. Arch. Rational Mech. Anal. 193(2), 311–337 (2009)

31. Showalter, R.E.: Monotone operators in Banach space and nonlinear partial differ-
ential equations. In: Mathematical Surveys and Monographs, vol. 49. American Math-
ematical Society, Providence, 1997

32. Simon, J.: Compact sets in the space L p(0, T ; B). Ann. Mat. Pura Appl., IV. 146, 65–96
(1987)



Parabolic Systems with p, q-Growth 267

33. Zhikov, V.V., Pastukhova, S.E.: On the property of higher integrability for parabolic
systems of variable order of nonlinearity. Mat. Zametki 87(2), 179–200 (2010); trans-
lation in Math. Notes 87, 169–188 (2010)

34. Strauss, W.: On continuity of functions with values in various Banach spaces. Pacific
J. Math. 19, 543–551 (1966)

Department Mathematik
Universität Erlangen–Nürnberg

Cauerstrasse 11, 91058 Erlangen, Germany.
e-mail: boegelein@math.fau.de

e-mail: duzaar@math.fau.de

and

Dipartimento di Matematica “U.Dini”
Università di Firenze

Viale Morgagni 67/A, 50134 Firenze, Italy.
e-mail: marcellini@math.unifi.it

(Received January 3, 2013 / Accepted April 13, 2013)
Published online May 22, 2013 – © Springer-Verlag Berlin Heidelberg (2013)


	Parabolic Systems with p,q-Growth: A Variational Approach
	Abstract
	1 Introduction
	2 Results
	2.1 Existence and Uniqueness of Variational Solutions
	2.2 Existence of Weak Solutions
	2.3 Regularity of Variational Solutions

	3 Preliminaries and Notations
	3.1 Notations
	3.2 Preliminaries

	4 Existence of Variational Solutions
	4.1 Regularization
	4.2 Energy Bound
	4.3 Weak Continuity in Time
	4.4 The Variational Formulation
	4.5 Passage to the Limit epsilon downarrow 0

	5 Uniqueness of Variational Solutions
	5.1 Mollification in Time
	5.2 Proof of the Uniqueness Result

	6 A Local Lq-Estimate for the Spatial Gradient
	6.1 Parabolic Function Spaces
	6.2 Caccioppoli Inequality for Finite Differences
	6.3 Quantitative Higher Integrability
	6.4 Uniform Improvement of the Integrability Exponent
	6.5 Iteration

	7 Proof of Theorems 2.6 and 2.8
	Appendix A: A Compactness Result
	Appendix B: Mollification in Time
	References


